Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Here are two vectors: a = (2.0 m) i - (2.0 m) j and b = (4.0 m) i + (8.0 m) j. (

ID: 1952695 • Letter: H

Question

Here are two vectors:
a = (2.0 m) i - (2.0 m) j and b = (4.0 m) i + (8.0 m) j.
(a) Find the magnitude of a.
m
Find the direction of a.
°
b) Find the magnitude of b.
m
Find the direction of b.
°
(c) Find the magnitude of a + b.
m
Find the direction of a + b.
°
(d) Find the magnitude of b - a.
m
Find the direction of b - a.
°
(e) Find the magnitude of a - b.
m
Find the direction of a - b.
°

How do the orientations of the last two (d and e) compare?
AThe angle between the two vectors is 45°.
BThe angle between the two vectors is 30°.
C The angle between the two vectors is 0°.
D The angle between the two vectors is 90°.
EThe angle between the two vectors is 180°.
F The angle between the two vectors is 60°.

Explanation / Answer

   Given that,    The first vector, a = (2.0 m)i^-(2.0 m)j^    The second vector, b = (4.0 m)i^+(8.0 m)j^
____________________________________________    a)       The magnitude of the vector 'a' is given by                            |a| = (2.0 m)2+(-2.0 m)2                                = 2.828 m                                = 2.83 m       The direction of the vector 'a' is                         tan = -2.0 m/2.0 m                             = tan-1(-1.0)                                 = -45o  (or) 135o ____________________________________________ ____________________________________________    b)        The magnitude of the vector 'b' is given by                            |b| = (4.0 m)2+(8.0 m)2                                = 8.944 m                                = 8.95 m       The direction of the vector 'b' is                         tan = 8.0 m/4.0 m                             = tan-1(2.0)                                 = 63.43o   ______________________________________________ ______________________________________________    c)       The sum of the two vectors is given by               a+b = [(2.0 m)i^-(2.0 m)j^]+[(4.0 m)i^+(8.0 m)j^]                      = (6.0 m)i^+(6.0 m)j^       The magnitude of the vector 'a+b' is given by                            |a+b| = (6.0 m)2+(6.0 m)2                                     = 8.485 m                                     = 8.49 m       The direction of the vector 'a+b' is                         tan = 6.0 m/6.0 m                             = tan-1(1.0)                                 = 45o   ______________________________________________ ______________________________________________    d)       The difference between vector b and vector a is                 b-a = [(4.0 m)i^+(8.0 m)j^]-[(2.0 m)i^-(2.0 m)j^]                       = (2.0 m)i^+(10.0 m)j^       The magnitude of the vector 'b-a' is given by                             |b-a| = (2.0 m)2+(10.0 m)2                                     = 10.198 m                                     = 10.20 m       The direction of the vector 'b-a' is                         tan = 10.0 m/2.0 m                             = tan-1(5.0)                                 = 78.69o   _________________________________________________ _________________________________________________    e)       The difference between vector a and vector b is                 a-b = [(2.0 m)i^-(2.0 m)j^]-[(4.0 m)i^+(8.0 m)j^]                       = (-2.0 m)i^-(10.0 m)j^       The magnitude of the vector 'a-b' is given by                             |a-b| = (-2.0 m)2+(-10.0 m)2                                     = 10.198 m                                     = 10.20 m       The direction of the vector 'a-b' is                         tan = -10.0 m/-2.0 m                             = tan-1(5.0)                                 = 78.69o  (or) 258.69o __________________________________________________ __________________________________________________    f)       The angle between the two vectors is 180°.
                               = 2.828 m                                = 2.83 m       The direction of the vector 'a' is                         tan = -2.0 m/2.0 m                             = tan-1(-1.0)                                 = -45o  (or) 135o ____________________________________________ ____________________________________________    b)        The magnitude of the vector 'b' is given by                            |b| = (4.0 m)2+(8.0 m)2                                = 8.944 m                                = 8.95 m       The direction of the vector 'b' is                         tan = 8.0 m/4.0 m                             = tan-1(2.0)                                 = 63.43o   ______________________________________________ ______________________________________________    c)       The sum of the two vectors is given by               a+b = [(2.0 m)i^-(2.0 m)j^]+[(4.0 m)i^+(8.0 m)j^]                      = (6.0 m)i^+(6.0 m)j^       The magnitude of the vector 'a+b' is given by                            |a+b| = (6.0 m)2+(6.0 m)2                                     = 8.485 m                                     = 8.49 m       The direction of the vector 'a+b' is                         tan = 6.0 m/6.0 m                             = tan-1(1.0)                                 = 45o   ______________________________________________ ______________________________________________    d)       The difference between vector b and vector a is                 b-a = [(4.0 m)i^+(8.0 m)j^]-[(2.0 m)i^-(2.0 m)j^]                       = (2.0 m)i^+(10.0 m)j^       The magnitude of the vector 'b-a' is given by                             |b-a| = (2.0 m)2+(10.0 m)2                                     = 10.198 m                                     = 10.20 m       The direction of the vector 'b-a' is                         tan = 10.0 m/2.0 m                             = tan-1(5.0)                                 = 78.69o   _________________________________________________ _________________________________________________    e)       The difference between vector a and vector b is                 a-b = [(2.0 m)i^-(2.0 m)j^]-[(4.0 m)i^+(8.0 m)j^]                       = (-2.0 m)i^-(10.0 m)j^       The magnitude of the vector 'a-b' is given by                             |a-b| = (-2.0 m)2+(-10.0 m)2                                     = 10.198 m                                     = 10.20 m       The direction of the vector 'a-b' is                         tan = -10.0 m/-2.0 m                             = tan-1(5.0)                                 = 78.69o  (or) 258.69o __________________________________________________ __________________________________________________    f)       The angle between the two vectors is 180°.
                           |b| = (4.0 m)2+(8.0 m)2                                = 8.944 m                                = 8.95 m       The direction of the vector 'b' is                         tan = 8.0 m/4.0 m                             = tan-1(2.0)                                 = 63.43o   ______________________________________________ ______________________________________________    c)       The sum of the two vectors is given by               a+b = [(2.0 m)i^-(2.0 m)j^]+[(4.0 m)i^+(8.0 m)j^]                      = (6.0 m)i^+(6.0 m)j^       The magnitude of the vector 'a+b' is given by                            |a+b| = (6.0 m)2+(6.0 m)2                                     = 8.485 m                                     = 8.49 m       The direction of the vector 'a+b' is                         tan = 6.0 m/6.0 m                             = tan-1(1.0)                                 = 45o   ______________________________________________ ______________________________________________    d)       The difference between vector b and vector a is                 b-a = [(4.0 m)i^+(8.0 m)j^]-[(2.0 m)i^-(2.0 m)j^]                       = (2.0 m)i^+(10.0 m)j^       The magnitude of the vector 'b-a' is given by                             |b-a| = (2.0 m)2+(10.0 m)2                                     = 10.198 m                                     = 10.20 m       The direction of the vector 'b-a' is                         tan = 10.0 m/2.0 m                             = tan-1(5.0)                                 = 78.69o   _________________________________________________ _________________________________________________    e)       The difference between vector a and vector b is                 a-b = [(2.0 m)i^-(2.0 m)j^]-[(4.0 m)i^+(8.0 m)j^]                       = (-2.0 m)i^-(10.0 m)j^       The magnitude of the vector 'a-b' is given by                             |a-b| = (-2.0 m)2+(-10.0 m)2                                     = 10.198 m                                     = 10.20 m       The direction of the vector 'a-b' is                         tan = -10.0 m/-2.0 m                             = tan-1(5.0)                                 = 78.69o  (or) 258.69o __________________________________________________ __________________________________________________    f)       The angle between the two vectors is 180°.
______________________________________________ ______________________________________________    c)       The sum of the two vectors is given by               a+b = [(2.0 m)i^-(2.0 m)j^]+[(4.0 m)i^+(8.0 m)j^]                      = (6.0 m)i^+(6.0 m)j^       The magnitude of the vector 'a+b' is given by                            |a+b| = (6.0 m)2+(6.0 m)2                                     = 8.485 m                                     = 8.49 m       The direction of the vector 'a+b' is                         tan = 6.0 m/6.0 m                             = tan-1(1.0)                                 = 45o   ______________________________________________ ______________________________________________    d)       The difference between vector b and vector a is                 b-a = [(4.0 m)i^+(8.0 m)j^]-[(2.0 m)i^-(2.0 m)j^]                       = (2.0 m)i^+(10.0 m)j^       The magnitude of the vector 'b-a' is given by                             |b-a| = (2.0 m)2+(10.0 m)2                                     = 10.198 m                                     = 10.20 m       The direction of the vector 'b-a' is                         tan = 10.0 m/2.0 m                             = tan-1(5.0)                                 = 78.69o   _________________________________________________ _________________________________________________    e)       The difference between vector a and vector b is                 a-b = [(2.0 m)i^-(2.0 m)j^]-[(4.0 m)i^+(8.0 m)j^]                       = (-2.0 m)i^-(10.0 m)j^       The magnitude of the vector 'a-b' is given by                             |a-b| = (-2.0 m)2+(-10.0 m)2                                     = 10.198 m                                     = 10.20 m       The direction of the vector 'a-b' is                         tan = -10.0 m/-2.0 m                             = tan-1(5.0)                                 = 78.69o  (or) 258.69o __________________________________________________ __________________________________________________    f)       The angle between the two vectors is 180°.
______________________________________________ ______________________________________________    d)       The difference between vector b and vector a is                 b-a = [(4.0 m)i^+(8.0 m)j^]-[(2.0 m)i^-(2.0 m)j^]                       = (2.0 m)i^+(10.0 m)j^       The magnitude of the vector 'b-a' is given by                             |b-a| = (2.0 m)2+(10.0 m)2                                     = 10.198 m                                     = 10.20 m       The direction of the vector 'b-a' is                         tan = 10.0 m/2.0 m                             = tan-1(5.0)                                 = 78.69o   _________________________________________________ _________________________________________________    e)       The difference between vector a and vector b is                 a-b = [(2.0 m)i^-(2.0 m)j^]-[(4.0 m)i^+(8.0 m)j^]                       = (-2.0 m)i^-(10.0 m)j^       The magnitude of the vector 'a-b' is given by                             |a-b| = (-2.0 m)2+(-10.0 m)2                                     = 10.198 m                                     = 10.20 m       The direction of the vector 'a-b' is                         tan = -10.0 m/-2.0 m                             = tan-1(5.0)                                 = 78.69o  (or) 258.69o __________________________________________________ __________________________________________________    f)       The angle between the two vectors is 180°.
_________________________________________________ _________________________________________________    e)       The difference between vector a and vector b is                 a-b = [(2.0 m)i^-(2.0 m)j^]-[(4.0 m)i^+(8.0 m)j^]                       = (-2.0 m)i^-(10.0 m)j^       The magnitude of the vector 'a-b' is given by                             |a-b| = (-2.0 m)2+(-10.0 m)2                                     = 10.198 m                                     = 10.20 m       The direction of the vector 'a-b' is                         tan = -10.0 m/-2.0 m                             = tan-1(5.0)                                 = 78.69o  (or) 258.69o __________________________________________________ __________________________________________________    f)       The angle between the two vectors is 180°.
__________________________________________________ __________________________________________________    f)       The angle between the two vectors is 180°.
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote