For an optimal receiver design for a binary communication system with AWGN For t
ID: 1985467 • Letter: F
Question
For an optimal receiver design for a binary communication system with AWGN For this problem, where channel noise NOT AWGN, the conditional probability density functions are Area of Trapezoid = average of two base lengths times the altitude ((6 + 2)/2) Times altitude = 4 Times altitude From the geometry - if we call the altitude (or, height) -- 'h' -- the two trapeziods cross at x = 0 at 0.50 h ((6 + 2)/2) Times h = 4h The altitude of the trapezoids was not given, but the area of each conditional probability density function equal to one (1) If so, 4h = 1 -- h = 1/4 At x = 0 1/2 h = 1/8 Area A_0 = A_1 = (1/2)* (1)* (1/8) Area A_0 = A_1 = 1/16 If transmission of 0 or 1 is equally likely, what are the optimal decision thresholds? If transmission of 0 or 1 is equally likely, what is the corresponding error probability? If the probability of transmitting a 0 is 0.40 and the probability of transmitting a 1 is 0.60 compute the optimal threshold.Explanation / Answer
just check this..if it is correct take otherwise left this
to obatain optical bit error rate for the receved signal it is important to take 0/1 decisions bases on optimum setting of the decision thereshold.this decision making sometimes referred as slising depend on impairement of optical signal has expirence during the propagation. over the fiber
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.