answer questions c-f for this problem (25%) Problem 2: A positive charge of magn
ID: 2036532 • Letter: A
Question
answer questions c-f for this problem
Explanation / Answer
coordinates are:
Q1: (0,0)
Q2: (4.5*0.01,0) m
P:(4.5*0.01,4.5*0.01) m
field at P due to Q1:
as Q1 is positive, field will be away from Q1 and towards P.
field direction vector=(4.5*0.01,4.5*0.01)-(0,0)=(0.045,0.045)
distance=sqrt(2)*0.045=0.06364 m
unit vector along the field=(0.045,0.045)/0.06364=(0.707,0.707)
field magnitude=k*Q1/distance^2
where k=coloumb’s constant=9*10^9
field magnitude=9*10^9*3.5*10^(-9)/0.06364^2
=7777.7 N/C
in vector notation, field due to Q1=E1=7777.7*(0.707,0.707) N/C
field at P due to Q2:
as Q2 is negative, field will be away from P and towards Q2.
field direction vector=(4.5*0.01,0)-(0.045,0.045)=(0,-0.045)
distance=0.045 m
unit vector along the field=(0,-0.045)/0.045=(0,-1)
field magnitude=k*Q2/distance^2
where k=coloumb’s constant=9*10^9
field magnitude=9*10^9*8.5*10^(-9)/0.045^2
=3.7778*10^4 N/C
in vector notation, field due to Q2=E2=3.7778*10^4*(0,-1) N/C
answers are:
part c:
y component of field at P due to Q2=3.7778*10^(4)*(-1)=-3.7778*10^4 N/C
part d:
total field=E1+E2=(5.4988*10^3,-3.228*10^4) N/C
so y component=-3.228*10^4 N/C
part e:
magnitude of total field=sqrt((5.4988*10^3)^2+(3.228*10^4)^2)=3.2745*10^4 N/C
part f:
angle in degree=arctan(y component / x component)
=arctan((-3.228*10^4)/(5.4988*10^3))
=-80.333 degrees
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.