<p>Calculate the magnitude and direction of the Coulomb force on each of the thr
ID: 2044574 • Letter: #
Question
<p>Calculate the magnitude and direction of the Coulomb force on each of the three charges shown in the figure below.</p><p>6.00 µC charge:</p>
<p>magnitude:            N</p>
<p>direction:</p>
<p>1.50 µC charge:</p>
<p>-2.00 µC charge:</p>
<p> </p>
<p><img src="" alt="" /></p>
<p> </p>
<p>I keep getting coulombs constant as my answer for the first charge and my homework says that is not right.</p>
Explanation / Answer
ANSWER: F = kq1q2/r^2
1) F = k(6x10^-6)(1.5x10^-6)/(0.03)^2 -k(6x10^-6)(2x10^-6)/(0.05)^2 = 75-43.2 = 31.8N to the left
2) F = k(1.5x10^-6)(6x10^-6)/(0.03)^2 +k(1.5x10^-6)(2x10^-6)/(0.02)^2 = 75+67.5 = 142.5N to the right
3) F = k(2x10^-6)(6x10^-6)/(0.05)^2 +k(2x10^-6)(1.5x10^-6)/(0.02)^2 = 43.2+67.5 = 110.7N to the left
ANSWER: F = kq1q2/r^2
1) F = k(6x10^-6)(1.5x10^-6)/(0.03)^2 -k(6x10^-6)(2x10^-6)/(0.05)^2 = 75-43.2 = 31.8N to the left
2) F = k(1.5x10^-6)(6x10^-6)/(0.03)^2 +k(1.5x10^-6)(2x10^-6)/(0.02)^2 = 75+67.5 = 142.5N to the right
3) F = k(2x10^-6)(6x10^-6)/(0.05)^2 +k(2x10^-6)(1.5x10^-6)/(0.02)^2 = 43.2+67.5 = 110.7N to the left
ANSWER: F = kq1q2/r^2
1) F = k(6x10^-6)(1.5x10^-6)/(0.03)^2 -k(6x10^-6)(2x10^-6)/(0.05)^2 = 75-43.2 = 31.8N to the left
2) F = k(1.5x10^-6)(6x10^-6)/(0.03)^2 +k(1.5x10^-6)(2x10^-6)/(0.02)^2 = 75+67.5 = 142.5N to the right
3) F = k(2x10^-6)(6x10^-6)/(0.05)^2 +k(2x10^-6)(1.5x10^-6)/(0.02)^2 = 43.2+67.5 = 110.7N to the left
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.