Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The highest achievable resolving power of a microscope is limited only by the wa

ID: 2076191 • Letter: T

Question

The highest achievable resolving power of a microscope is limited only by the wavelength used; that is, the smallest item that can be distinguished has dimensions about equal to the wavelength. Suppose one wishes to "see" inside an atom. Assuming the atom to have a diameter of 100 pm, this means that one must be able to resolve a width of, say, 10 pm. (a) If an electron microscope is used, what minimum electron energy is required? (b) If a light microscope is used, what minimum photon energy is required? (c) Which microscope seems more practical? Why?

Explanation / Answer

   1.   for a particle in motion wavelength() and energy(E) are related as

               =   h/ (2*m*E)

where    h   =   Plank'sconstant   =   6.626 *10-34  J-s

            m   =   mass    =   9.1* 10-31 kg (for electron)

               =   10pm   =   10 *10-12

thus               10* 10-12   =   6.626 *10-34 / ( 2 * 9.1 * 10-31 *E)

            Square both sides

            10-22   =   4.39* 10-67 / (18.2 * 10-31 * E)

            E   =   2.41* 10-37 / 10-22

                  =   2.41*10-15   J   =   2.41* 10-15 / 1.6 * 10-16 keV

      As 1keV   =   1.6 *10-16 J

            E   =   15.06 keV

   2.   For a photon

         E   =   h*c/

               =   6.626* 10-34 * 3 * 108   / (10* 10-12)

               =   1.987* 10-14 J   =   1.987 * 10-14 /(1.6 * 10-16)   keV

         E   =   1.24* 102 keV

The electron microscope, since it needs less energy