In an amusement park ride called The Roundup, passengers stand inside a 14.9 m d
ID: 2123741 • Letter: I
Question
In an amusement park ride called The Roundup, passengers stand inside a 14.9 m diameter rotating ring. After the ring has acquired sufficient speed, it tilts into a vertical plane, as shown in Figure P7.47.style="font-family: verdana, helvetica, sans-serif; font-size: 13px; line-height: 20px;">color="red">style="font-family: verdana, helvetica, sans-serif; font-size: 13px; line-height: 20px;">
style="font-family: verdana, helvetica, sans-serif; font-size: 13px; line-height: 20px;">color="red">style="font-family: verdana, helvetica, sans-serif; font-size: 13px; line-height: 20px;">
style="font-family: verdana, helvetica, sans-serif; font-size: 13px; line-height: 20px;">color="red">style="font-family: verdana, helvetica, sans-serif; font-size: 13px; line-height: 20px;">
style="font-family: verdana, helvetica, sans-serif; font-size: 13px; line-height: 20px;">color="red">style="font-family: verdana, helvetica, sans-serif; font-size: 13px; line-height: 20px;">
http://www.webassign.net/knight/P7.47.gifstyle="font-family: verdana, helvetica, sans-serif; font-size: 13px; line-height: 20px;">color="red">style="font-family: verdana, helvetica, sans-serif; font-size: 13px; line-height: 20px;">
style="font-family: verdana, helvetica, sans-serif; font-size: 13px; line-height: 20px;">color="red">style="font-family: verdana, helvetica, sans-serif; font-size: 13px; line-height: 20px;">
style="font-family: verdana, helvetica, sans-serif; font-size: 13px; line-height: 20px;">color="red">style="font-family: verdana, helvetica, sans-serif; font-size: 13px; line-height: 20px;">
(a) Suppose the ring rotates every 4.5 s. If a rider's mass is 58 kg, with how much force does the ring push on her at the top of the ride?
N
How much force the does the ring push on her at the bottom of the ride?
N
(b) What is the longest rotation period of the wheel that will prevent riders from falling off at the top?
s
Explanation / Answer
Part A)
The centripetal force at the top is found from mw^2r
w = 2pi/4.5 = 1.4 rad/s
Fc = (58)(1.4)^2(7.45) = 846.9 N
The weight = 58(9.8) = 568.4 N
The net force is 846.9 - 568.4 = 278.5 N
At the bottom, the forces add, so
846.9 + 568.4 = 1415.3 N
Part B
Fc would be the weight = 568.4
568.4 = (58)(w^2)7.45
w = 1.147 rad/s
1.147/2pi = .183 rev/s
1/.183 = 5.48 sec
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.