6 Consider the matrix A given by 10032 2 1 00 3 A=132100 0 321 0 003 2 1 (a) Use
ID: 2266979 • Letter: 6
Question
6 Consider the matrix A given by 10032 2 1 00 3 A=132100 0 321 0 003 2 1 (a) Use a numerical software package to find the eigendecomposition. A = EAE, where is the diagonal matrix of eigenvalues and the columns of E are the eigenvectors. (Suggestion, see eig in Matlab.) (i) Look at the scaled magnitudes of the eigenvector entries: abs (E) sqrt (5). What do you observe? (i) Look at the angles of the eigenvector entries: 180/pi*angle(E). What do you observe? (iii) Compare the conjugate transpose of E to the inverse of E. What do you observe? (b) What is the definition of "circulant" matrix? c)(for graduate students) What property must a circulant matrix satisfy in order that its eigenvalues are real-valued?Explanation / Answer
Using MATLAB functions to solve the given solution,
A = [1 0 0 3 2;2 1 0 0 3;3 2 1 0 0;0 3 2 1 0;0 0 3 2 1];
(a)
[E,D] = eig(A)
Eigen vector matrix E =
[ 0.4472 + 0.0000i 0.4472 + 0.0000i 0.4472 + 0.0000i -0.3618 - 0.2629i -0.3618 + 0.2629i;
0.4472 + 0.0000i 0.1382 - 0.4253i 0.1382 + 0.4253i 0.4472 + 0.0000i 0.4472 + 0.0000i;
0.4472 + 0.0000i -0.3618 - 0.2629i -0.3618 + 0.2629i -0.3618 + 0.2629i -0.3618 - 0.2629i;
0.4472 + 0.0000i -0.3618 + 0.2629i -0.3618 - 0.2629i 0.1382 - 0.4253i 0.1382 + 0.4253i;
0.4472 + 0.0000i 0.1382 + 0.4253i 0.1382 - 0.4253i 0.1382 + 0.4253i 0.1382 - 0.4253i ]
Diagonal matrix D with eigen values on the diagonal D =
[
6.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i ;
0.0000 + 0.0000i -0.8090 + 3.6655i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i;
0.0000 + 0.0000i 0.0000 + 0.0000i -0.8090 - 3.6655i 0.0000 + 0.0000i 0.0000 +0.0000i;
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.3090 + 1.6776i 0.0000 + 0.0000i;
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.3090 - 1.6776i; ]
(i)
A1 = abs(E)*sqrt(5)
[
1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 ]
(ii)
A2 = 180/pi * angle(E)
[
0 0 0 -144.0000 144.0000
0 -72.0000 72.0000 0 0
0 -144.0000 144.0000 144.0000 -144.0000
0 144.0000 -144.0000 -72.0000 72.0000
0 72.0000 -72.0000 72.0000 -72.0000 ]
(iii)
complex conjugate transpose of E
A3 = E'
[
0.4472 + 0.0000i 0.4472 + 0.0000i 0.4472 + 0.0000i 0.4472 + 0.0000i 0.4472 + 0.0000i
0.4472 + 0.0000i 0.1382 + 0.4253i -0.3618 + 0.2629i -0.3618 - 0.2629i 0.1382 - 0.4253i
0.4472 + 0.0000i 0.1382 - 0.4253i -0.3618 - 0.2629i -0.3618 + 0.2629i 0.1382 + 0.4253i
-0.3618 + 0.2629i 0.4472 + 0.0000i -0.3618 - 0.2629i 0.1382 + 0.4253i 0.1382 - 0.4253i
-0.3618 - 0.2629i 0.4472 + 0.0000i -0.3618 + 0.2629i 0.1382 - 0.4253i 0.1382 + 0.4253i
]
A4 = inv(E)
[
0.4472 - 0.0000i 0.4472 - 0.0000i 0.4472 - 0.0000i 0.4472 + 0.0000i 0.4472 + 0.0000i
0.4472 - 0.0000i 0.1382 + 0.4253i -0.3618 + 0.2629i -0.3618 - 0.2629i 0.1382 - 0.4253i
0.4472 + 0.0000i 0.1382 - 0.4253i -0.3618 - 0.2629i -0.3618 + 0.2629i 0.1382 + 0.4253i
-0.3618 + 0.2629i 0.4472 + 0.0000i -0.3618 - 0.2629i 0.1382 + 0.4253i 0.1382 - 0.4253i
-0.3618 - 0.2629i 0.4472 - 0.0000i -0.3618 + 0.2629i 0.1382 - 0.4253i 0.1382 + 0.425 ]
So complex conjugate and inverse of eigen vector matrix are same.
(b) A circulant matrix is a square matrix where each row is a single shifted version of the precedent row.
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.