Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Please help me find the electrical field generated by these gaussian spheres. Th

ID: 2275182 • Letter: P

Question

Please help me find the electrical field generated by these gaussian spheres. Thanks!

Two spherical charge distributions sit on the x-axis so that they touch at the origin. Each sphere has radius R. Their volume charge densities depend on radius according to the formulas rho 1 = A/r and rho 2 = -B/r where A and B are positive contants with unit . With these charge distribution function, the charge inside Gaussian spheres of radius r drawn within the distribution are: q = 2 pi Ar 2 and q = 2 pi Br 2. Consider the electric field created by each sphere of charge and write the electric field vector for point P, Q, R, and S in terms of A, B, R, and epsilon 0. The exact coordinates are: P (-R, 0) Q (-R/2, ) R (0, 0) S (R, R) T (0, R)

Explanation / Answer

Note: e0 = epsilon0

---------------------------------------------------------------------

POINT "P":

Ex = q1/(4 pi e0 r1^2) + q2/(4 pi e0 r2^2)

Ex = (0)/(4 pi e0 R^2) + (2 pi B R^2)/(4 pi e0 (2R)^2)

Ex = (B)/(8 e0)

Ey = 0

Vector:

==> E(P) = ((B)/(8 e0) i^ + 0 j^

---------------------------------------------------------------------

POINT "Q":

Ex = q1/(4 pi e0 r1^2) + q2/(4 pi e0 r2^2)

q1 = (2 pi A R^2) * (pi (R/2)^2)/(pi R^2) = (2 pi A R^2) * (1/4) = (1/2) pi A R^2

Ex = ((1/2) pi A R^2)/(4 pi e0 (R/2)^2) + (2 pi B R^2)/(4 pi e0 (3R/2)^2)

Ex = ((1/2) pi A)/(4 pi e0 (1/2)^2) + (2 pi B)/(4 pi e0 (3/2)^2)

Ex = (A)/(2 e0) + (2 B)/(9 e0)

Ey = 0

==> E(Q) = (A)/(2 e0) + (2 B)/(9 e0) i^ + 0 j^

---------------------------------------------------------------------

POINT "R":

Ex = q1/(4 pi e0 r1^2) + q2/(4 pi e0 r2^2)

Ex = (2 pi A R^2)/(4 pi e0 R^2) + (2 pi B R^2)/(4 pi e0 R^2)

Ex = (A)/(2 e0) + (B)/(2 e0)

Ex = (A + B)/(2 e0)

Ey = 0

Vector:

==> E(R) = ((A + B)/(2 e0) i^ + 0 j^

---------------------------------------------------------------------

POINT "S":

Ex = q1/(4 pi e0 r1^2) cos(theta)

Ex = (2 pi A R^2)/(4 pi e0 (5 R^2)) * (2/(sqrt(5)))

Ex = (A)/(5 sqrt(5) e0)

Ey = q1/(4 pi e0 r1^2) sin(theta) - q2/(4 pi e0 r2^2)

Ey = (2 pi A R^2)/(4 pi e0 (5 R^2)) * (1/(sqrt(5))) - (2 pi B R^2)/(4 pi e0 (2R)^2)

Ey = (A)/(10 sqrt(5) e0) - (B)/(8 e0)

Vector:

==> E(S) = ((A)/(5 sqrt(5) e0) i^ + ((A)/(10 sqrt(5) e0) - (B)/(8 e0)) j^

---------------------------------------------------------------------

POINT "T":

Ex = q1/(4 pi e0 r1^2) cos(45) + q2/(4 pi e0 r2^2) cos(45)

Ex = (2 pi A R^2)/(4 pi e0 (sqrt(2) R)^2) (sqrt(2)/2) + (2 pi B R^2)/(4 pi e0 (sqrt(2) R)^2) (sqrt(2)/2)

Ex = (sqrt(2) A)/(8 e0) + (sqrt(2) B)/(8 e0)

Ex = (sqrt(2) (A + B))/(8 e0)

Ey = 0

Vector:

==> E(T) = (sqrt(2) (A + B))/(8 e0) i^ + 0 j^





Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote