Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Garage, Inc., has identified the following two mutually exclusive projects: What

ID: 2748927 • Letter: G

Question

Garage, Inc., has identified the following two mutually exclusive projects:

   

  

What is the IRR for each of these projects? (Do not round intermediate calculations. Enter your answers as a percent rounded to 2 decimal places, e.g., 32.16.)

  

  

Using the IRR decision rule, which project should the company accept?

If the required return is 11 percent, what is the NPV for each of these projects? (Do not round intermediate calculations and round your answers to 2 decimal places, e.g., 32.16.)

  

  

At what discount rate would the company be indifferent between these two projects? (Do not round intermediate calculations. Enter your answer as a percent rounded to 2 decimal places, e.g., 32.16.)

  

%

Year Cash Flow (A) Cash Flow (B) 0 –$ 29,600 –$ 29,600 1 15,000 4,600 2 12,900 10,100 3 9,500 15,800 4 5,400 17,400

Explanation / Answer

Answer (a-1)

IRR

Project A

19.92%

Project B

18.20%

Answer (a-2)

Using IRR decision, Project A should be accepted

Answer (a-3)

Is this decision necessarily correct    - No

Answer (b-1)

NPV

Project A

$ 4886.91

Project B

$ 5756.27

Answer (b-2)

Company chooses Project B if it applied NPV rule

Answer (c)

Discount rate = 14.33%

Year

0

1

2

3

4

Project A

-29600

15000

12900

9500

5400

Project B

-29600

4600

10100

15800

17400

Calculation of IRR

Project A

Let r be the rate of return at which NPV = 0, that is

-29600 + 15000/(1+r) + 12900/(1+r)^2 + 9500/(1+r)^3 + 5400/(1+r)^4 = 0

Let r = 20%, LHS will be

= -29600 + 15000/(1.20) + 12900/(1.20)^2 + 9500/(1.20)^3 + 5400/(1.20)^4

= - 29600 + 15000 * 0.833333 + 12900 * 0.694444 + 9500 * 0.578704 + 5400 *0.482253

= -29600 + 12500 + 8958.333 + 5497.685 + 2604.167

= -39.8148

Let r = 19%, LHS will be

= -29600 + 15000/(1.19) + 12900/(1.19)^2 + 9500/(1.19)^3 + 5400/(1.19)^4

= - 29600 + 15000 * 0.840336 + 12900 * 0.706165 + 9500 * 0.593416 + 5400 * 0.498669

= -29600+12605..04+9109.526+5637.45+2692.811

= 444.8297

r = 0.19 + (444.8297 * (0.19-0.20))/(-39.8148-444.8297)

r = 0.19 + (4.448297/484.6445)

r = 0.19 + 0.00917847 = 0.19917847 or 19.92% (rounded off)

Project B

Let r be the rate of return which makes NPV = 0, then

-29600 + 4600/(1+r) + 10100/(1+r)^2 + 15800/(1+r)^3 + 17400/(1+r)^4 = 0

Let r = 18%, LHS will be

= -29600 + 4600/(1.18) + 10100/(1.18)^2 + 15800/(1.18)^3 + 17400/(1.18)^4

= -29600 + 4600 * 0.847458 + 10100 * 0.718184 + 15800 * 0.608631 + 17400 * 0.515789

= -29600 + 3898.305 + 7253.663 + 9616.368 + 8974.726

= 143.062

Let r = 18.5%

= -29600 + 4600/(1.185) + 10100/(1.185)^2 + 15800/(1.185)^3 + 17400/(1.185)^4

= -29600 + 4600 * 0.843882 + 10100 * 0.712137 + 15800 * 0.600959 + 17400 * 0.507139

= -29600 + 3881.857 + 7192.58 + 9495.155 + 8824.21

= -206.199

r= 0.18 + (143.062 * (0.18-0.0185))/(-206.199-143.062)

r = 0.18 + (0.71531/349.261)

r = 0.18 + 0.002048 = 0.182048 or 18.20% (rounded off)

Calculation of NPV

Required rate of return = 11%

Project A

NPV = -29600 + 15000/(1.11) + 12900/(1.11)^2 + 9500/(1.11)^3 + 5400/(1.11)^4

NPV = -29600 + 15000 * 0.900901 + 12900 * 0.811622 + 9500 * 0.731191 + 5400 * 0.658731

NPV = -29600 + 13513.51 + 10469.93 + 6946.318 + 3557.147

NPV = 4886.908 or 4886.91 (rounded off)

Project B

NPV = -29600 + 4600/(1.11) + 10100/(1.11)^2 + 15800/(1.11)^3 + 17400/(1.11)^4

NPV = -29600 + 4600 * 0.900901 + 10100 * 0.811622 + 15800 * 0.731191 + 17400 * 0.658731

NPV = -29600 + 4144.144 + 8197.387 + 11552.82 + 11461.92

NPV = 5756.273 or 5756.27 (rounded off)

Let r be the discount rate at which the company will be indifferent to two projects. That is

-29600 + 15000/(1+r) + 12900/(1+r)^2 + 9500/(1+r)^3 + 5400/(1+r)^4 = -29600 + 4600/(1+r) + 10100/(1+r)^2 + 15800/(1+r)^3 + 17400/(1+r)^4

-29600 + 15000/(1+r) + 12900/(1+r)^2 + 9500/(1+r)^3 + 5400/(1+r)^4 – (-29600 + 4600/(1+r) + 10100/(1+r)^2 + 15800/(1+r)^3 + 17400/(1+r)^4) = 0

-29600 + 15000/(1+r) + 12900/(1+r)^2 + 9500/(1+r)^3 + 5400/(1+r)^4 + 29600 - 4600/(1+r) - 10100/(1+r)^2 - 15800/(1+r)^3 - 17400/(1+r)^4 = 0

(15000 – 4600)/(1+r) + (12900 – 10100)/(1+r)^2 + (9500-15800)/(1+r)^3 + (5400-17400)/(1+r)^4 =0

10400/(1+r) + 2800/(1+r)^2 – 6300/(1+r)^3 – 12000/(1+r)^4 = 0

Let r = 14%, LHS will be

= 10400/(1.14) + 2800/(1.14)^2 – 6300/(1.14)^3 – 12000/(1.14)^4

= 10400 * 0.877193 + 2800 * 0.769468 – 6300 * 0.674972 – 12000 * 0.59208

= 9122.807 + 2154.509 – 4252.32 – 7104.96

= -79.9678

Let r = 14.5%, LHS will be

= 10400/(1.145) + 2800/(1.145)^2 – 6300/(1.145)^3 – 12000/(1.145)^4

= 10400 * 0.873362 + 2800 * 0.762762 – 6300 * 0.666168 – 12000 * 0.581806

= 9082.969 + 2135.733 – 4196.86 – 6981.67

= 40.17701

r = 0.14 + (-79.9678 * (0.14-0.145))/(40.17701-(-79.9678))

r = 0.14 + (0.399839 / 120.14481)

r = 0.14 +0.00332797

r = 0.143327 or 14.33% (rounded off)

IRR

Project A

19.92%

Project B

18.20%