Help please! A flat circular plate has the shape of the region x2 + y2 le 1. The
ID: 2832559 • Letter: H
Question
Help please!
Explanation / Answer
1)
dT/dx = 2x-1 = 0 -> x = 1/2
dT/dy = 4y = 0 -> y = 0
(1/2 , 0) is inside the circle and is a critical point -> T(1/2 , 0) = -0.25 -> minimum point
On boundary:
T(x) = x^2+2y^2-x = x^2 + 2(1-x^2) - x = 2 - x^2 - x -> dT/dx = -2x-1 = 0 -> x = -1/2 -> y = sqrt(3)/2, -sqrt(3)/2
-> T(-1/2 , sqrt(3)/2) = 1/4 + 3/2 + 1/2 = 2.25 -> maximum point
So the hottest points are: (-1/2 , sqrt(3)/2) and (-1/2 , -sqrt(3)/2)
The coldest point is: (1/2 , 0)
2)
f(x,y) = 1/x - 27/y + xy
df/dx = -1/x^2 + y = 0 -> y = 1/x^2
df/dy = 27/y^2 + x = 0 -> x = -27/y^2
Therefore:
x = -27x^4
x(27x^3+1) = 0 -> x = 0 -> not acceptable because y = 1/x^2
x = -1/3 -> y = 9
only critical point is (-1/3 , 9)
d^2f/dx^2 = 2/x^3 = -54
d^2f/dy^2 = -54/y^3 = -2/27
d^2f/dxdy = 1
D = -54 * (-2/27) - 1 = 3 > 0 , d^2f/dx^2 < 0 -> (-1/3 , 9) is a relative minimum.
3)
S(x,y,z) = T(x,y,z) + u(4x^2+y^2+4z^2-16) = 8x^2+4yz-16z+600 + u(4x^2+y^2+4z^2-16)
dS/dx = 16x + 8xu = 0 -> x = 0 or u = -2
dS/dy = 4z+2uy = 0 -> y = -2z/u -> y = -4/(u^2-1)
dS/dz = 4y-16+8uz = 0 -> -8z/u - 16 + 8uz = 0 -> z(u - 1/u) = 2 -> z = 2u/(u^2-1)
dS/du = 0 -> 4x^2+y^2+4z^2-16 = 0
if x = 0 : y^2+4z^2 = 16 -> (16+16u^2)/(u^2-1)^2 = 16 -> 1+u^2 = (u^2-1)^2 -> u = 0 , +sqrt(3) , -sqrt(3)
-> y = 4 , z = 0 and y = -2 , z = sqrt(3) and y = -2 , z = -sqrt(3)
if u = -2 : y = -4/3 , z = -4/3 , x^2 = (16 - 16/9 - 64/9)/4 = 16/9 -> x = -4/3 , 4/3
T(0,4,0) = 600
T(0,-2,sqrt(3)) = 600 - 24sqrt(3)
T(0,-2,-sqrt(3)) = 600 + 24sqrt(3)
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.