In this problem you will evaluate and be given a chance to check your intermedia
ID: 2857941 • Letter: I
Question
In this problem you will evaluate
and be given a chance to check your intermediate steps.
-------------------------------------------------------------------
-------------------------------------------------------------------
-------------------------------------------------------------------
Answer:
Do not include an arbitrary constant "+ C" in your answer.
-------------------------------------------------------------------
-------------------------------------------------------------------
Answer: +C
Do not include an arbitrary constant "+ C" in your answer.
Explanation / Answer
x = 5sin(t) --> FIRST ANSWER
dx = 5cos(t)*dt
sqtr(25 - x^2) --> sqrt(25 - 25sin^2t) --> sqrt(25)*sqrt(1 - sin^2t) --> 5*sqrt(cos^2t) --> 5cost
So, problem becomes :
5cost * 5cost*dt
25cos^2(t)*dt
f(t) = 25 * cos^2(t) --> SECOND ANSWER
(integral)25*cos^2(t)*dt
25 * (integral) [1 + cos(2t)]/2 * dt
25*[t/2 + sin(2t)/4] + C
25t/2 + 25sin(2t)/4 + C ---> THIRD ANSWER
x = 5sin(t)
x/5 = sin(t)
t = arcsin(x/5) --> FOURTH ANSWER
Plug this back into the intyegral solution.....
25t/2 + 25sin(2t)/4 + C
becomes
(25/2)arcsin(x/5) + (25/4)sin(2arcsin(x/5) ) + C
(25/2)arcsin(x/5) + (25/2)sin(arcsin(x/5))cos(arcsin(x/5)) + C
(25/2)arcsin(x/5) + (25/2)(x/5)(sqrt(25 - x^2)/5) + C
(25/2)arcsin(x/5) + (x/2)*sqrt(25 - x^2) + C ---> FIFTH ANSWER
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.