In this problem you will evaluate and be given a chance to check your intermedia
ID: 2857952 • Letter: I
Question
In this problem you will evaluate
and be given a chance to check your intermediate steps.
-------------------------------------------------------------------
-------------------------------------------------------------------
-------------------------------------------------------------------
Answer:
Do not include an arbitrary constant "+ C" in your answer.
-------------------------------------------------------------------
-------------------------------------------------------------------
Answer: +C
Do not include an arbitrary constant "+ C" in your answer.
Explanation / Answer
x = (8/5)(sec(t)) --> FIRST ANSWER
dx = (8/5)(sect*tant)
And sqrt(25x^2 - 64) --> sqrt(25*64sec^2t/25 - 64) --> sqrt(64sec^2t - 64) ---> sqrt(64)*sqrt(sec^2t - 1)
--> 8*sqrt(tan^2t) --> 8tan(t)
So, integral becomes :
(8/5)(sect*tant) / 8tan(t)
(1/5)sec(t)
So, f(t) = (1/5)(sec(t)) ---> SECOND ANSWER
Integrating :
(1/5)*ln|Sec(t) + tan(t)| ---> THIRD ANSWER
Given x = (8/5)(sec(t))
sec(t) = 5x/8
t = arcsec(5x/8) ---> FOURTH ANSWER
(1/5)*ln|Sec(arcsec(5x/8)) + tan(arcsec(5x/8))|
(1/5)ln|5x/8 + sqrt(25x^2 - 64)/8| + C
So, it becomes :
(1/5)ln| (5x + sqrt(25x^2 - 64)) / 8 | + C ---> FIFTH ANSWER
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.