Name Math 125 Project 4 (10.1-10.3) (rwo pages) 15pts For problem do the followi
ID: 2870670 • Letter: N
Question
Name Math 125 Project 4 (10.1-10.3) (rwo pages) 15pts For problem do the following: (a) Eliminate the parameter to find a Cartesian equation of the curve. (b) Graph the Cartesian equation first, then graph the actual curve for the parametric equations with arrows showing direction. Also label IP and TP. (c) Set up the integral to find the length of the curve. Do not evaluate. 2, 1st 3 nt y -t 2. a) Find dy x 1+ lnt, y t +2 for the parametric curve b) Find an equation of the tangent line when t-1.Explanation / Answer
1) (a) x=ln t^2 =2lnt
x/2 = lnt
t=e^(x/2) now we will plug this in 2nd equation y= t^2-2 we will get
y= (e^x/2)^2-2
y= e^x-2 answer
c) x= 2ln2
y= e^x -2
dy/dx=e^x
if t= 1 then x= 2ln(1) =0
if t=3 then x= 2ln3
so we will have length of curve
L= integral ( from 0 to 2ln3) sqrt( 1+(dy/dx)^2)
= integral ( 0 to 2ln3) sqrt( 1+e^(2x))
2) a) x= 1+lnt
dx/dt= 1/t
y= t^2+2
dy/dt= 2t
dy/dx= dy/dt/dx/dt=2t/1/t=2t^2
dy/dx= 2t^2
b) dy/dx = 2t^2
if t= 1
then dy/dx = 2
if t=1 then x= 1+ln(1) =1=0 =1
x=1
and y= t^2+2
y= 1+2 = 3 so w e got
dx/dt= 1/t
y= t^2+2
dy/dt= 2t
dy/dx /dx/dt = dy/dx= 2t/1/t= 2t^2
dy/dx = 2t^2 Answer
b) dy/dx = 2t^2
if t= 1
then dy/dx = 2
if t=1 then x= 1+ln(1) =1=0 =1
x=1
and y= t^2+2
y= 1+2 = 3 so w e got
y-y1=m(x-x1) m= 2 , x1= 1 and y1=3
we got
y-3=2(x-1)
y-3=2x-2
y=2x+1 answer
3) (x, y) = (-1, sqrt3)
x= r cost
y= rsint
-1 = rcost
sqrt3=r sin t
squaring and adding both sides
1+3= r^2(cos^2t+sin^2t)
4= r^2
r= 2
also divide both we got sqrt3/-1 = tant
tan t= - sqrt3
t= 2pi/3
so we got polar coordinates ( 2, 2pi/3)
4) r^2 =-3sec theta
we know that sectheta= 1/costheta
and x= r costheta
costheta = x/r so w e will get
r^2 = -3/x/r
r^2*1/r= -3/x
r= -3/x
but r= sqrt(x^2+y^2)
so w e got sqrt(x^2+y^2) = -3/x
squaring both sides
x^2+y^2 =9/x^2
x^2(x^2+y^2)=9 answers
5) a) x^2+y^2 =9
we know that x^2+y^2 = r^2
so wewill have r^2 =9
so r= 3 and r= -3 answers
b) x+y = 9
x=rcostheta and y= r sintheta
rcostheta+r sintheta =9
r(costheta+sintheta) =9
r= 9/(costheta+sintheta) answer
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.