Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

f o g for f(x) = Squareroot x + 6 and g(x) = 8x - 10 A) 2 Squareroot 2x - 1 B) 8

ID: 2879578 • Letter: F

Question

f o g for f(x) = Squareroot x + 6 and g(x) = 8x - 10 A) 2 Squareroot 2x - 1 B) 8 Squareroot x - 4 C) 8 Squareroot x + 6 - 10 D) 2 Squareroot 2x + 1 Find the domain of the composite function f o g. f(x) = 1/x - 6 g(x) = Squareroot x + 1 A) [-1, 35] (35, infinity) B) [0, 69] (6, infinity) C) [0, 35] (35, infinity) d) [-1, 6] (6) f(x) = 1/x + 5, g(x) = 10/x A) (-infinity, -5) (-5, 0) (0, infinity) B) (-infinity, infinity) C) (-infinity, -5) (-5, -2) (-2, 0) (0, infinity) D) (-infinity, -2) (-2, 0) (0, -infinity) Express the given function H as a composition of two functions f and g such that H(x) = (f o g)(x) H(x) = 1/x^2 - 3 A) f(x) = 1/x, g(x) = x^2 - 3 b) f(x) = 1/x^2, g(x) = -1/3 C) f(x) = 1/3, g(x) = x^2 - 3 D) f(x) = 1/x^2, g(x) = x - 3 H(x) = |9x + 10| A) f(x) = x, g(x) = 9x + 10 B) f(x) = |-x|, g(x) = 9x - 10 C) f(x) = |x|, g(x) = 9x + 10 D) f(x) = -|x|, g(x) = 9x + 10 H(x) = 8/Squareroot 4x + 9 A) f(x) = Squareroot 4x + 9, g(x) = 8 b) f(x) = 8/Squareroot x, g(x) = 4x + 9 C) f(x) = 8/x, g(x) = 4x + 9 D) f(x = 8, g(x) = Squareroot 4x + 9 H(x) = (3x - 3)^7 A) f(x) = 3x - 3, g(x) = x^7 B)f(x) = x^7, g(x) = 3x - 3 C) f(x) = (3x)^7, g(x) = -3 D) f(x) = 3x^7, g(x) = x - 3

Explanation / Answer

9)

f og = f(g(x))

= sqrt(g(x)+6) = sqrt(8x-10+6) = sqrt(8x-4) =sqrt(4(2x-1))= 2 sqrt(2x-1)

Option A.