We wish to compute integral_-3^3 x^2 + 3/x^3 + 4x^2 - 16x - 64 dx. (i) We begin
ID: 2883095 • Letter: W
Question
We wish to compute integral_-3^3 x^2 + 3/x^3 + 4x^2 - 16x - 64 dx. (i) We begin by factorizing the denominator of the rational function. We get x^3 + 4x^2 - 16x - 64 = (x- a) (x - b)^2 for a notequalto b. What are a and b? a = , b = (ii) Next, we express the fraction in the form x^2 + 3/x^3 + 4x^2 - 16x - 64 = A/x - a + B/x - b + C/(x - b)^2. Give the exact values of A , B and C. A = , B = , C = (iii) Finally, we use this partial fraction decomposition to compute the integral. Give its approximate value with 3 decimal places. integral_-3^3 x^ + 3/x^3 + 4x^2 - 16x - 64 dx approximatelyExplanation / Answer
we have given integration of (x=-3 to 3) (x2+3)/(x3+4x2-16x-64)
(i) factoring the denominator
(x3+4x2-16x-64) =(x-4)(x-(-4))2
a=4,b=-4
ii) expressing the partial fraction form
(x2+3)/[(x-4)(x-(-4))2] =A/x-4 +B/(x-(-4)) +C/(x-(-4))2
=[A(x-(-4))^2+B(x-4)(x-(-4))+C(x-4)]/[(x-4)(x-(-4))^2]
multiply the equation by denominator on both sides
[(x2+3)*(x-4)(x-(-4))2]/[(x-4)(x-(-4))2] =[A(x-(-4))^2+B(x-4)(x-(-4))+C(x-4)]*((x-4)(x-(-4))^2)/[(x-4)(x-(-4))^2]
(x2+3)=[A(x-(-4))^2+B(x-4)(x-(-4))+C(x-4)]
plug the real roots of denominator x=,4,-4
plug x=4 into above equation
(16+3)=64A
A=19/64
plug x=-4 into above equation
-8C=19
C=-19/8
plug the A=19/64,C=-19/8 into above equation
(x2+3)=[(19/64)(x-(-4))^2+B(x-4)(x-(-4))-(19/8)(x-4)]
(x2+3)=(19/64)x^2+(19/64)*16+(19/64)*8x+Bx^2-B16-(19/8)x+(19/8)*4
group elements according to powers of x
(x2+3)=((19/64)+B)x^2+(-B16+57/4)
-B16+57/4=3
16B=57/4-3=45/4
B=45/4/16 =45/64
(x2+3)/[(x-4)(x-(-4))2] =19/64(x-4) + 45/(64(x-(-4))) -19/(8(x-(-4))2)
A=19/64,B=45/64,C=-19/8
integration of (x=-3 to 3) (x2+3)/(x3+4x2-16x-64)
=[integration of (19/64(x-4) + 45/(64(x+4)) -19/(8(x+4)2))]dx from x=-3 to 3 ---(1)
now solving integration of (19/(64(x-4)))dx
substitute u=x-4,dx=du
integration of (19/(64(x-4)))dx= integration of (19/(64(u)))du =(19/64)*ln(u)=(19/64)*ln|(x-4)| since u=x-4
now solving integration of (45/(64(x+4)))dx
substitute u=x+4,du=dx
integration of (45/(64(x+4)))dx=integration of (45/(64(u)))du =(45/46)*ln(u)=(45/46)*ln|(x+4)| since u=x+4
now solving integration of (19/(8(x+4)2))dx
substitute u=x+4, du=dx
integration of (19/(8(x+4)2))dx=(19/8)*integration of (u-2)du =-(19/8)*(1/u)=-(19/8)*(1/(x+4)) since u=x+4
substitute above integration values into equation (1)
integration of (x=-3 to 3) (x2+3)/(x3+4x2-16x-64)
=[integration of (19/64(x-4) + 45/(64(x+4)) -19/(8(x+4)2))]dx from x=-3 to 3 ---(1)
=[(19/64)*ln|(x-4)|+(45/46)*ln|(x+4)|+(19/8)*(1/(x+4))] from x=-3 to 3
=[(19/64)*ln|(-1)|+(45/46)*ln|(7)|+(19/8)*(1/7))]-[(19/64)*ln|(-7)|+(45/46)*ln|(1)|+(19/8)*(1/1)]
=(45/64)*ln(7)+19/56-(19/64)*ln(7)-19/8
=(45/64)*ln(7)+(19/56)-(19/64)*(8+ln(7))
=-1.245
integration of (x=-3 to 3) (x2+3)/(x3+4x2-16x-64) =-1.245
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.