Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Find the limit. Use I\'Hospital\'s Rule if appropriate. Use INF to represent pos

ID: 2883932 • Letter: F

Question

Find the limit. Use I'Hospital's Rule if appropriate. Use INF to represent positive infinity, NINF for negative infinity, and D for the limit does not exist. lim_x rightarrow 0 -5 cot (9x) sin (3x) =

Explanation / Answer

answer is -5/3 Using cot(9 x) = (cos(9 x))/(sin(9 x)), write -5 sin(3 x) cot(9 x) as -(5 sin(3 x) cos(9 x))/(sin(9 x)): lim_(x->0) -(5 cos(9 x) sin(3 x))/(sin(9 x)) By the product rule, lim_(x->0) -(5 sin(3 x) cos(9 x))/(sin(9 x)) = -5 (lim_(x->0) (sin(3 x))/(sin(9 x))) (lim_(x->0) cos(9 x)): -5 lim_(x->0) cos(9 x) lim_(x->0) (sin(3 x))/(sin(9 x)) lim_(x->0) cos(9 x) = cos(9 0) = 1: -5 lim_(x->0) (sin(3 x))/(sin(9 x)) Applying l'Hôpital's rule, we get that lim_(x->0) (sin(3 x))/(sin(9 x)) | = | lim_(x->0) ( d/( dx) sin(3 x))/( d/( dx) sin(9 x)) | = | lim_(x->0) (3 cos(3 x))/(9 cos(9 x)) | = | lim_(x->0) (cos(3 x))/(3 cos(9 x)) -5lim_(x->0) (cos(3 x))/(3 cos(9 x)) lim_(x->0) (cos(3 x))/(3 cos(9 x)) = (cos(3 0))/(3 cos(9 0)) = 1/3: -51/3 -5/3 = -5/3: Answer: -5/3

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote