Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Oxygen 47.01 23.91 43 61 170 190 8.1 1438 54.37 24.99 45 46 157 169 6.22 618 59.

ID: 2909671 • Letter: O

Question

Oxygen

47.01

23.91

43

61

170

190

8.1

1438

54.37

24.99

45

46

157

169

6.22

618

59.73

25.11662

44

39

165

173

5.626667

277

50.31

26.25858

39

56

179

181

6.326667

559

45.17

24.5392

48

59

177

177

8.32

4000

45.93

24.99592

41

71

177

181

7.993333

2961

49.14

25.10494

44

65

163

171

7.346667

1551

40.25

23.73396

45

64

176

177

9.1

8955

60.42

24.90943

39

49

171

187

6.246667

516

51.52

24.73187

45

46

169

169

7.153333

1278

37.93

23.93121

46

57

187

193

9.506667

13449

44.78

23.97361

46

52

177

177

7.766667

2360

48.13

26.22539

48

48

163

165

7.506667

1820

52.85

25.25057

55

51

167

171

6.893333

985

49.95

26.80163

50

45

181

186

8.1

551

41.04

26.29004

52

58

169

173

7.76

2344

47.27

24.21605

52

49

163

169

7.086667

1195

47.04

26.74587

49

49

163

165

6.933333

1025

51.36

24.24693

50

68

169

169

7.026667

1126

40.07

25.69204

58

59

175

177

8.726667

6165

46.08

24.28803

55

63

157

166

7.64

2079

46.35

24.46296

53

49

165

167

7.3

710

55.13

26.29201

51

49

147

156

6.466667

643

46.09

24.51372

52

49

173

173

7.813333

2473

39.88

25.96763

55

45

169

173

9.193333

9831

45.85

25.42663

52

60

187

189

7.42

1669

50.95

20.49481

58

50

149

156

6.686667

801

48.74

24.67682

50

57

187

189

6.373333

586

48.12

23.38058

49

53

171

177

8.2

2751

48.17

24.44704

53

54

171

173

9.3

1881

After looking at the graphs and the p-value from the Pearson correlation, the one best predictor for oxygen consumptionis the run time for one mile.

Build a simple linear regression model using the best predictor you found in question 1 and write the regression equation for estimating average oxygen consumption in the following space.

Rcmdr>  RegModel.9 <- lm(Oxygen~RunTimeOneMile, data=Dataset)

Rcmdr>  summary(RegModel.9)

Call:

lm(formula = Oxygen ~ RunTimeOneMile, data = Dataset)

Residuals:

   Min      1Q  Median     3Q     Max

-5.9824 -2.5403 -0.3897  1.7629 7.8372

Coefficients:

               Estimate Std. Error t value     Pr(>|t|)    

(Intercept)     80.7309    4.4969  17.952      < 2e-16 ***

RunTimeOneMile  -4.3439    0.5916  -7.343 0.0000000538 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.181 on 28 degrees of freedom

Multiple R-squared:  0.6582,Adjusted R-squared:  0.646

F-statistic: 53.92 on 1 and 28 DF,  p-value: 0.00000005385

The Intercept (p-value = 2e-16)and the beta coefficient (p-value = 0.0000000538) are both significantly different from zero. The following equation is used to find the equation of the regression line, the variables ? and ? are highlighted above.

Equation of the Regression Line:

g= a+ b×x         

g= 80.7309 + (-4.3439) ×x

Use the model you built in 2. to estimate theaverageoxygen consumption for all people whose values for all variables are in the following data table, with a 95% confidence interval. (Since only one significant predictor is to be used in this exercise, you would just use one of the following data values in the prediction.)

Age

BMI

Oxygen

RunTime

RestPulse

RunPulse

MaxPulse

Ranking

58

23

32.948

11

61

135

153

1200

Use the model you built in 2. to estimate the oxygen consumption for a personwhose values for all variables are in the data table above, with a 95% confidence interval.

Verify the assumptions for this regression model and comment on your findings.

[Copy and paste your R output here!]

Can the model you built earlier be used to estimate the oxygen consumption for subjects whose RunTime is 18, RestPulse is 80, RunPulse is 100, MaxPulse is 100, or Ranking is 15,000? Please answer yes or no and explain your answer. If your answer is “yes”, what would be your estimated average oxygen consumption for this type of subjects?

Oxygen

BMI Age Rest Pulse Run Pulse Max Pulse Run Time One Mile Rankings

47.01

23.91

43

61

170

190

8.1

1438

54.37

24.99

45

46

157

169

6.22

618

59.73

25.11662

44

39

165

173

5.626667

277

50.31

26.25858

39

56

179

181

6.326667

559

45.17

24.5392

48

59

177

177

8.32

4000

45.93

24.99592

41

71

177

181

7.993333

2961

49.14

25.10494

44

65

163

171

7.346667

1551

40.25

23.73396

45

64

176

177

9.1

8955

60.42

24.90943

39

49

171

187

6.246667

516

51.52

24.73187

45

46

169

169

7.153333

1278

37.93

23.93121

46

57

187

193

9.506667

13449

44.78

23.97361

46

52

177

177

7.766667

2360

48.13

26.22539

48

48

163

165

7.506667

1820

52.85

25.25057

55

51

167

171

6.893333

985

49.95

26.80163

50

45

181

186

8.1

551

41.04

26.29004

52

58

169

173

7.76

2344

47.27

24.21605

52

49

163

169

7.086667

1195

47.04

26.74587

49

49

163

165

6.933333

1025

51.36

24.24693

50

68

169

169

7.026667

1126

40.07

25.69204

58

59

175

177

8.726667

6165

46.08

24.28803

55

63

157

166

7.64

2079

46.35

24.46296

53

49

165

167

7.3

710

55.13

26.29201

51

49

147

156

6.466667

643

46.09

24.51372

52

49

173

173

7.813333

2473

39.88

25.96763

55

45

169

173

9.193333

9831

45.85

25.42663

52

60

187

189

7.42

1669

50.95

20.49481

58

50

149

156

6.686667

801

48.74

24.67682

50

57

187

189

6.373333

586

48.12

23.38058

49

53

171

177

8.2

2751

48.17

24.44704

53

54

171

173

9.3

1881

Explanation / Answer

The Regression Model that has been drawn you in first part using one variable is,

RegModel = lm(Oxygen~RunTimeOneMile, data=Dataset)

Summary Model:

Coefficients: Estimate Std. Error t value     Pr(>|t|)   

(Intercept) 80.7309 4.4969 17.952      < 2e-16 ***

RunTimeOneMile  -4.3439 0.5916 -7.343 0.0000000538 ***

The p-value is less than 0.05 so variable is RunTimeOneMile significant.

The Fitted Model is:

Oxygen = 80.7309 - 4.3439 * RunTimeOneMile  

The Adjusted R-squared:  0.646 so model is good

For estimating the value of given table we want to build the Regression model using all variable:

The output of model is,

lm(formula = Oxygen ~ ., data = data)

therefore the fitted model is,

Oxygen = 97.3060 -0.33616 * BMI - 0.22732 * Age -0.15973 * RestPulse -0.18965 * RunPulse + 0.15690 * MaxPulse -1.97343 * RunTimeOneMile -0.0006023 * Rankings

Summary of model:

Coefficients: Estimate Std. Error t value Pr(>|t|)   

(Intercept) 97.3060623 18.5833390 5.236 0.0000298 ***

BMI -0.3361646 0.4408102 -0.763 0.4538   

Age -0.2273289 0.1262583 -1.801 0.0855 .  

RestPulse -0.1597365 0.0758004 -2.107 0.0467 *  

RunPulse -0.1896556 0.1179991 -1.607 0.1223   

MaxPulse 0.1569042 0.1275520 1.230 0.2316   

RunTimeOneMile -1.9734351 0.9016637 -2.189 0.0395 *  

Rankings -0.0006023 0.0002642 -2.280 0.0327 *  

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.767 on 22 degrees of freedom

Multiple R-squared: 0.7967,

Adjusted R-squared: 0.732

F-statistic: 12.31 on 7 and 22 DF, p-value: 0.000002553

The above results are drawn at 0.05 significance that is at 95% confidence level

The value of Adjusted R^2 is 0.732 and this is greater than the model 1 so model two is good than the model one.

The predicted value of Oxygen at this given table:

Age

BMI

Oxygen

RunTime

RestPulse

RunPulse

MaxPulse

Ranking

58

23

32.948

11

61

135

153

1200

Put the given value in the above model:

Oxygen = 97.3060 -0.33616 * BMI - 0.22732 * Age -0.15973 * RestPulse -0.18965 * RunPulse + 0.15690 * MaxPulse -1.97343 * RunTimeOneMile -0.0006023 * Rankings

> Oxygen=97.3060-0.33616*23-0.22732*58-0.15973*61-0.18965*135+0.15690*153-0.000602*1200
> Oxygen
[1] 64.32678

So predicted value of oxygen consumption is 64.3267

The predicted value of consumed oxygen at the given value,

RunTime is 18, RestPulse is 80, RunPulse is 100, MaxPulse is 100, or Ranking is 15,000

Oxygen = 97.3060 -0.33616 * BMI - 0.22732 * Age -0.15973 * RestPulse -0.18965 * RunPulse + 0.15690 * MaxPulse -1.97343 * RunTimeOneMile -0.0006023 * Rankings

= -109.5736

i.e. not possible to consume oxygen at this value

>>>>>>>>>>>>> Best Luck >>>>>>>>>>>>>

Coefficients Value Intercept 97.306 BMI -0.3361646 Age -0.2273289 RestPulse -0.1597365 RunPulse -0.1896556 MaxPulse 0.1569042 RunTimeOneMile -1.9734351 Rankings -0.0006023