The resistance to motion of a good bicycle on smooth pavement is nearly all due
ID: 2991556 • Letter: T
Question
The resistance to motion of a good bicycle on smooth pavement is nearly all due toaerodynamic drag. Assume that the total mass of rider and bike is M = 100 kg. The frontal area measured from a photograph is A = 0.46 m2. Experiments on a hill, where the road grade is 8 percent, show that terminal speed is Vt = 15 m/s. From these data, drag coefficient is estimated as CD = 1.2. a) Verify this calculation of drag coefficient. B) Estimate the distance needed for the bike and rider to decelerate from 15 to 10 m/s while coasting after reaching level road.
Explanation / Answer
Road grade = Tan = 0.08.
Hence, = 4.57 degrees. Sin = 0.08.
(a) For terminal velocity while going downhill, forward force due to gravitation = backward force due to drag.
Hence, MgSin = Cd*1/2*AV2
Taking air density = 1.2 kg/m3 and putting values we get,
100*9.8*0.08 = Cd*1/2*1.2*0.46*152
This gives, Cd = 1.26
This is approximately the same as mentioned in the question. Hence verified.
(b) Drag force on level road, F = Cd*1/2*AV2
Hence, deceleration = F/m = Cd*1/(2m)*AV2
dV/dt = Cd*1/(2m)*AV2
(dV/ds)(ds/dt) = Cd*1/(2m)*AV2 (Here s denotes the distance.)
V(dV/ds) = Cd*1/(2m)*AV2
dV/V = Cd*1/(2m)*A*ds
Integrating it on both the sides, ln (V2/V1) = Cd*1/(2m)*A*(s2-s1)
Hence, s2-s1 = 2m/Cd * ln (V2/V1) / A
Putting values, Distance = 2*100/1.2 * ln(10/15) / (1.2*0.46)= -122.5 m
Ignoring the negatie sign, distance = 122.5 m
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.