Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Question Part Points Submissions Used In this problem, we explore the effect on

ID: 3021703 • Letter: Q

Question


Question Part
Points
Submissions Used
In this problem, we explore the effect on the standard deviation of adding the same constant to each data value in a data set. Consider the following data set.
17, 10, 4, 4, 13
(a) Use the defining formula, the computation formula, or a calculator to compute s. (Enter your answer to one decimal place.)
  

(b) Add 7 to each data value to get the new data set 24, 17, 11, 11, 20. Compute s. (Enter your answer to one decimal place.)
  
(c) Compare the results of parts (a) and (b). In general, how do you think the standard deviation of a data set changes if the same constant is added to each data value?
Adding the same constant c to each data value results in the standard deviation remaining the same.
Adding the same constant c to each data value results in the standard deviation increasing by c units.
Adding the same constant c to each data value results in the standard deviation decreasing by c units.
There is no distinct pattern when the same constant is added to each data value in a set.

Explanation / Answer

a)

Getting the mean, X,          
          
X = Sum(x) / n          
Summing the items, Sum(x) =    48      
As n =    5      
Thus,          
X =    9.6      
          
Setting up tables,          
x   x - X   (x - X)^2  
17   7.4   54.76  
10   0.4   0.16  
4   -5.6   31.36  
4   -5.6   31.36  
13   3.4   11.56  
          
          
          
Thus, Sum(x - X)^2 =    129.2      
          
Thus, as           
          
s^2 = Sum(x - X)^2 / (n - 1)          
          
As n =    5      
          
s^2 =    32.3      
          
Thus,          
          
s =    5.683308895   [ANSWER]

***************

b)

Getting the mean, X,          
          
X = Sum(x) / n          
Summing the items, Sum(x) =    83      
As n =    5      
Thus,          
X =    16.6      
          
Setting up tables,          
x   x - X   (x - X)^2  
24   7.4   54.76  
17   0.4   0.16  
11   -5.6   31.36  
11   -5.6   31.36  
20   3.4   11.56  
          
          
Thus, Sum(x - X)^2 =    129.2      
          
Thus, as           
          
s^2 = Sum(x - X)^2 / (n - 1)          
          
As n =    5      
          
s^2 =    32.3      
          
Thus,          
          
s =    5.683308895   [ANSWER]

******************

c)

As we can see, s didn't change, so:

OPTION A: Adding the same constant c to each data value results in the standard deviation remaining the same. [ANSWER]  
  

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote