Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

done via excel with calculations shown please , ty. 1 All of the 2 This was the

ID: 3048071 • Letter: D

Question

done via excel with calculations shown please , ty.

1 All of the 2 This was the text described below are taken from the 4th edition of a McGraw-Hill text entitled "Operations formerly used for instruction in BMDS3371 until it went out of print in early 2013. Management," authored by Stevenson and Ozgur. 4 EC Problem #1 Aviation Electronics produces three types of switching devices. Each type involves a two-step assembly operation. The assembly times are shown in 6 Assembly Time per Unit Station #1 Station #2 9 Model A 2.5 minutes 3.0 minutes 10 Model B 18 minutes 1.6 minutes 11 Model C 2.0 minutes 2.2 minutes 13 Each workstation has a daily working time of 7.5 hours. Manager Bob Parkes wants to obtain the greatest possible profit during the next five working days. Model A 14 yields a profit of $8.25 per unit, Model B a profit of $7.50 per unit, and Model C a profit of $7.80 per unit. Assume the firm can sell all it produces during this time but it must fill outstanding orders for 20 units of each model type 16 Formulate the linear programming model of this problem. Solve the model to show the maximum amount of profit possible given the constraints outlined above. 18

Explanation / Answer

maximize
Z = 8.25 A + 7.5 B + 7.8 C

2.5A + 1.8 B + 2C <= 7.5*60 <= 450
3A + 1.6 B + 2.2 C <= 7.5*60 <= 450

Tableau #1
a      b      c      s1     s2     z           
2.5    1.8    2      1      0      0      450  
3      1.6    2.2    0      1      0      450  
-8.25 -7.5   -7.8   0      0      1      0    

Tableau #2
a         b         c         s1        s2        z                 
0         0.466667 0.166667 1         -0.833333 0         75      
1         0.533333 0.733333 0         0.333333 0         150     
0         -3.1      -1.75     0         2.75      1         1237.5  

Tableau #3
a         b         c         s1        s2        z                 
0         1         0.357143 2.14286   -1.78571 0         160.714
1         0         0.542857 -1.14286 1.28571   0         64.2857
0         0         -0.642857 6.64286   -2.78571 1         1735.71

Tableau #4
a         b         c         s1        s2        z                 
1.38889   1         1.11111   0.555556 0         0         250     
0.777778 0         0.422222 -0.888889 1         0         50      
2.16667   0         0.533333 4.16667   0         1         1875    

Optimal Solution: z = 1875; a = 0, b = 250, c = 0

this is profit from 1 day

hence for 5 days

profit = 1875*5 = 9375

B = 250 *5 = 1250