Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

\"What do you think is the ideal number of children for a family to have?\" A Ga

ID: 3125467 • Letter: #

Question

"What do you think is the ideal number of children for a family to have?" A Gallup Poll asked this question of 1016 randomly chosen adults. Almost half (49%) thought two children was ideal.† We are supposing that the proportion of all adults who think that two children is ideal is p = 0.49. What is the probability that a sample proportion p falls between 0.46 and 0.52 (that is, within ±3 percentage points of the true p) if the sample is an SRS of size n = 450? (Round your answer to four decimal places.) What is the probability that a sample proportion p falls between 0.46 and 0.52 if the sample is an SRS of size n = 5000? (Round your answer to four decimal places.) Combine these results to make a general statement about the effect of larger samples in a sample survey. Larger samples give a smaller probability that p will be close to the true proportion p. Larger samples have no effect on the probability that p will be close to the true proportion p. Larger samples give a larger probability that p will be close to the true proportion p.

Explanation / Answer

A)

Here,          
n =    450      
p =    0.49      
We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    0.46      
x2 = upper bound =    0.52      
u = mean = p =    0.49      
          
s = standard deviation = sqrt(p(1-p)/n) =    0.023565512      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -1.273046841      
z2 = upper z score = (x2 - u) / s =    1.273046841      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.10150071      
P(z < z2) =    0.89849929      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.796998579   [ANSWER]

**********************

b)

Here,          
n =    5000      
p =    0.49      
We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    0.46      
x2 = upper bound =    0.52      
u = mean = p =    0.49      
          
s = standard deviation = sqrt(p(1-p)/n) =    0.007069653      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -4.24348947      
z2 = upper z score = (x2 - u) / s =    4.24348947      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    1.10035E-05      
P(z < z2) =    0.999988996      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.999977993   [ANSWER]

********************

c)

As we can see, it is

OPTION C: Larger samples give a larger probability that p will be close to the true proportion p. [ANSWER]