Four regression models are fitted to explore the effect of age on BMI. Use the r
ID: 3128215 • Letter: F
Question
Four regression models are fitted to explore the effect of age on BMI. Use the results (see below) to answer the following questions.
Model 1:
. regress bmi age
Source | SS df MS Number of obs = 1285
-------------+----------------------------- F( 1, 1283) = 27.53
Model | 565.735749 1 565.735749 Prob > F = 0.0000
Residual | 26365.083 1283 20.5495581 R-squared = 0.0210
-------------+----------------------------- Adj R-squared = 0.0202
Total | 26930.8188 1284 20.9741579 Root MSE = 4.5332
------------------------------------------------------------------------------
bmi | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+---------------------------------------------------------------
age | -.0779364 .0148537 -5.25 0.000 -.1070766 -.0487962
_cons | 32.52028 .9915627 32.80 0.000 30.57502 34.46554
------------------------------------------------------------------------------
Model 2:
. regress bmi gender
Source | SS df MS Number of obs = 1285
-------------+----------------------------- F( 1, 1283) = 11.35
Model | 236.116065 1 236.116065 Prob > F = 0.0008
Residual | 26694.7027 1283 20.8064713 R-squared = 0.0088
-------------+----------------------------- Adj R-squared = 0.0080
Total | 26930.8188 1284 20.9741579 Root MSE = 4.5614
------------------------------------------------------------------------------
bmi | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+---------------------------------------------------------------
gender | .9167072 .2721242 3.37 0.001 .38285 1.450564
_cons | 26.73945 .2239109 119.42 0.000 26.30018 27.17872
------------------------------------------------------------------------------
Model 3:
. regress bmi age gender
Source | SS df MS Number of obs = 1285
-------------+----------------------------- F( 2, 1282) = 20.01
Model | 815.142202 2 407.571101 Prob > F = 0.0000
Residual | 26115.6766 1282 20.3710426 R-squared = 0.0303
-------------+----------------------------- Adj R-squared = 0.0288
Total | 26930.8188 1284 20.9741579 Root MSE = 4.5134
------------------------------------------------------------------------------
bmi | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+---------------------------------------------------------------
age | -.0788591 .0147914 -5.33 0.000 -.1078771 -.0498411
gender | .9423034 .2693045 3.50 0.000 .4139776 1.470629
_cons | 31.94339 1.000919 31.91 0.000 29.97977 33.90701
------------------------------------------------------------------------------
Model 4
. regress bmi age gender agegender
Source | SS df MS Number of obs = 1285
-------------+----------------------------- F( 3, 1281) = 15.60
Model | 949.005478 3 316.335159 Prob > F = 0.0000
Residual | 25981.8133 1281 20.282446 R-squared = 0.0352
-------------+----------------------------- Adj R-squared = 0.0330
Total | 26930.8188 1284 20.9741579 Root MSE = 4.5036
------------------------------------------------------------------------------
bmi | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+---------------------------------------------------------------
age | -.0264662 .0251744 -1.05 0.293 -.0758537 .0229213
gender | 6.219454 2.071637 3.00 0.003 2.15528 10.28363
agegender | -.0798335 .0310753 -2.57 0.010 -.1407975 -.0188695
_cons | 28.48597 1.67591 17.00 0.000 25.19814 31.7738
------------------------------------------------------------------------------
(a) Describe the age effect on BMI?
(b) Describe the gender effect on BMI?
(c) Is there a significant interaction effect between age and gender on BMI? If yes, please explain.
(d) From the output, which measure will you use to select a better model? Based on the selected measure, which model will you choose?
(e) How much variation of BMI is explained by the selected model?
Explanation / Answer
Age is significantly predicting BMI, t=-5.25, P =0.000.
The relation is negative, when age increases by 1, BMI decreases by -0.0779
(b) Describe the gender effect on BMI?
gender is significantly predicting BMI, t=3.37, P=0.001
when gender is male(assuming male=1) , BMI increases by 0.9167
(c) Is there a significant interaction effect between age and gender on BMI? If yes, please explain.
interaction effect between age and gender is significant, t= -2.57, P=0.01.
(d) From the output, which measure will you use to select a better model? Based on the selected measure, which model will you choose?
we select adjusted R square.
We select model 4, because this adjusted R square 0.033 is larger than others.
(e) How much variation of BMI is explained by the selected model?
3.3% variation of BMI is explained by the selected model.
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.