Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Company XYZ know that replacement times for the portable MP3 players it produces

ID: 3130398 • Letter: C

Question

Company XYZ know that replacement times for the portable MP3 players it produces are normally distributed with a mean of 4 years and a standard deviation of 0.6 years.

Find the probability that a randomly selected portable MP3 player will have a replacement time less than 2.6 years?
P(X < 2.6 years) =

Enter your answer accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.

If the company wants to provide a warranty so that only 2.2% of the portable MP3 players will be replaced before the warranty expires, what is the time length of the warranty?
warranty = years

Enter your answer as a number accurate to 1 decimal place. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.

Explanation / Answer

a)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    2.6      
u = mean =    4      
          
s = standard deviation =    0.6      
          
Thus,          
          
z = (x - u) / s =    -2.333333333      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   -2.333333333   ) =    0.009815329 = 0.0098 [ANSWER]

**************************

b)

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.022      
          
Then, using table or technology,          
          
z =    -2.014090812      
          
As x = u + z * s,          
          
where          
          
u = mean =    4      
z = the critical z score =    -2.014090812      
s = standard deviation =    0.6      
          
Then          
          
x = critical value =    2.791545513 YEARS = 2.8 years [ANSWER, WARRANTY]  

***************************

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote