Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A Pew Research Center survey of 800 adults nationwide conducted December 6–19, 2

ID: 3132457 • Letter: A

Question

A Pew Research Center survey of 800 adults nationwide conducted December 6–19, 2011, found that 39% of 18- to 34-year-olds lived with their parents or had moved back in temporarily because of the economy in the past few years. On the basis of this sample, we want to estimate (at the time of the survey) the proportion p in the population of all 18- to 34-year-olds in the United States who lived with their parents or had moved back in temporarily because of the economy in the past few years. Are the conditions for inference met? The Pew Research Center sample was not an SRS but is described as a "nationally representative sample." We proceed with some caution, but will treat the Pew Research Center sample as an SRS from the population of all 18- to 34-year-olds in the United States. The number of "successes" in the sample is npˆ=800 0.39=312, and the number of "failures" is n(1pˆ)=488. Both are much larger than 10, so we regard the sample size as sufficiently large for using the Normal approximation.

1) Give three confidence intervals (±0.0001) for the proportion p of all 18- to 34-year-olds in the United States who lived with their parents or had moved back in temporarily because of the economy in the past few years, using 90%, 95%, and 99% confidence.

2) What are the margins of error (±0.0001) for 90%, 95%, and 99% confidence?

Explanation / Answer

1.

FOR 90% CONFIDENCE:

Note that              
              
p^ = point estimate of the population proportion = x / n =    0.39          
              
Also, we get the standard error of p, sp:              
              
sp = sqrt[p^ (1 - p^) / n] =    0.017244564          
              
Now, for the critical z,              
alpha/2 =   0.05          
Thus, z(alpha/2) =    1.644853627          
Thus,              
Margin of error = z(alpha/2)*sp =    0.028364784          
lower bound = p^ - z(alpha/2) * sp =   0.361635216          
upper bound = p^ + z(alpha/2) * sp =    0.418364784          
              
Thus, the confidence interval is              
              
(   0.361635216   ,   0.418364784   ) [ANSWER]

********************

FOR 95% CONFIDENCE:

Note that              
              
p^ = point estimate of the population proportion = x / n =    0.39          
              
Also, we get the standard error of p, sp:              
              
sp = sqrt[p^ (1 - p^) / n] =    0.017244564          
              
Now, for the critical z,              
alpha/2 =   0.025          
Thus, z(alpha/2) =    1.959963985          
Thus,              
Margin of error = z(alpha/2)*sp =    0.033798725          
lower bound = p^ - z(alpha/2) * sp =   0.356201275          
upper bound = p^ + z(alpha/2) * sp =    0.423798725          
              
Thus, the confidence interval is              
              
(   0.356201275   ,   0.423798725   ) [ANSWER]

*******************

FOR 99% CONFIDENCE:

Note that              
              
p^ = point estimate of the population proportion = x / n =    0.39          
              
Also, we get the standard error of p, sp:              
              
sp = sqrt[p^ (1 - p^) / n] =    0.017244564          
              
Now, for the critical z,              
alpha/2 =   0.005          
Thus, z(alpha/2) =    2.575829304          
Thus,              
Margin of error = z(alpha/2)*sp =    0.044419054          
lower bound = p^ - z(alpha/2) * sp =   0.345580946          
upper bound = p^ + z(alpha/2) * sp =    0.434419054          
              
Thus, the confidence interval is              
              
(   0.345580946   ,   0.434419054   ) [ANSWER]

***************************************************************************************************************************************************

2.

90%:

Margin of error = z(alpha/2)*sp =    0.028364784  

95%

Margin of error = z(alpha/2)*sp =    0.033798725  

99%:

Margin of error = z(alpha/2)*sp =    0.044419054  

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote