Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Suppose that a furniture manufacturer makes chairs, sofas, and tables. Consider

ID: 3148814 • Letter: S

Question

Suppose that a furniture manufacturer makes chairs, sofas, and tables. Consider the following chart of labor hours required and available.

Chair

Sofa

Table

Daily labor available (labor-hours)

Carpentry

6

3

8

752

Finishing

1

1

2

152

Upholstery

4

4

0

336

$90,

$70,

$140.

Suppose that a furniture manufacturer makes chairs, sofas, and tables. Consider the following chart of labor hours required and available.

Chair

Sofa

Table

Daily labor available (labor-hours)

Carpentry

6

3

8

752

Finishing

1

1

2

152

Upholstery

4

4

0

336

The profit per chair is

$90,

per sofa

$70,

and per table

$140.

How many pieces of each type of furniture should be manufactured each day to maximize the profit?

Explanation / Answer

So we can write the linear programming problem by given information

X1= Number of chairs X2 = number of sofas X3 = number of tables

Maximize z = 90x1 + 70x2 + 140x3

Subject to 6x1 + 3x2 +8x3 752

                   x1 + x2 +2x3 152

                    4x1 + 4x2 336

                    x1,x2 ,x3>= 0                  

Given linear problem is a stnadard linear problem so we can add slack variables to get

Equations from given inequalities.

6x1 + 3x2 +8x3 + S1 = 752

x1 + x2 +2x3 + S2 = 152

4x1 + 4x2 + s3 = 336

-90x1 - 70x2 - 140x3 + z =0

Now we can matrix representation of initial tableau for above equations.

X1      X2    X3          S1     S2    S3     Z  

6      3        8        1      0      0      0      752   

1      1        2        0      1      0      0      152   

4      4        0        0      0      1      0      336   

-90    -70    -140   0      0      0      1      0     

Here the most negative element in the bottom row will indicates the pivot column so 3rd     column is the pivot column and For pivot row the least positive result when last column divided by pivot column will indicates

i.e. +min(752/8,152/2,336/0) = 152/2 so 2nd   row is a pivoted row

R2 -> R2 (1/2)

X1          X2         X3          S1     S2       S3     Z  

6             3          8        1      0         0      0      752   

1/2      1/2        1        0      1/2    0      0      76   

4            4           0        0      0        1      0      336   

-90        -70      -140     0      0         0      1      0     

R1-> R1 - 8R2        R4 -> R4 + 140R2

X1      X2      X3      S1     S2     S3     Z  

2      -1        0      1      -4        0      0      144   

1/2   1/2    1       0      1/2     0      0      76    

4        4      0      0        0        1      0      336   

-20      0      0      0      70     0      1      10640

Here the most negative element in the bottom row will indicates the pivot column so 1st column

And for pivot row +min(144/2,76/(1/2)) = 144/2 so 1st row is a pivot row.

R1 -> R1(1/2)

X1      X2      X3      S1       S2      S3     Z  

1      -1/2   0      1/2    -2        0      0       72

1/2   1/2      1       0      1/2     0      0      76    

4        4        0      0        0         1      0      336   

-20      0      0      0       70        0      1      10640

R2 -> R2 - (1/2)R1                R3 -> R3 - 4R1   R4 -> R4 + 20R1

X1      X2      X3       S1       S2      S3     Z  

1      -1/2   0      1/2    -2      0      0      72    

0      3/4    1     -1/4   3/2    0      0      40    

0      6        0      -2        8      1      0       48    

0      -10    0       10       30     0      1      12080

Here the most negative element in the bottom row will indicates the pivot column so 2nd column

And for pivot row +min(40/(3/4),48/6) = 48/6 so 3rd   row is a pivot row

X1      X2       X3       S1        S2      S3      Z  

1      -1/2     0      1/2     -2      0       0      72    

0      3/4      1     -1/4    3/2    0        0      40    

0      1         0      -1/3   4/3    1/6    0      8

0      -10    0       10        30      0        1      12080

R1 -> R1 + (1/2)R3              R2 -> R2 – (3/4)R3     R4 -> R4 + 10R3

X1    X2    X3       S1        S2         S3        Z

1      0      0      1/3    -4/3      1/12   0      76    

0      0      1      0         1/2      -1/8    0      34    

0      1      0      -1/3   4/3       1/6    0      8     

0      0      0      20/3   130/3 5/3    1      12160

So now we did not have any negative elements in bottom row so we can stop the iterations.Now the optimum solution is Maximum Z = 12160   At    X1 = 76 , X2 = 8 ,X3 = 34

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote