Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Question Part Points Submissions Used Thirty-five small communities in Connectic

ID: 3154955 • Letter: Q

Question

Question Part Points Submissions Used Thirty-five small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5 reported cases of larceny per year. Assume that is known to be 45.1 cases per year.

(a) Find a 90% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.)

lower limit

upper limit

margin of error

(b) Find a 95% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.)

lower limit

upper limit

margin of error

(c) Find a 99% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.)

lower limit

upper limit

margin of error

Explanation / Answer

a)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.05          
X = sample mean =    138.5          
z(alpha/2) = critical z for the confidence interval =    1.644853627          
s = sample standard deviation =    45.1          
n = sample size =    35          
              
Thus,              

          
Lower bound =    125.9608015          
Upper bound =    151.0391985
Margin of Error E =    12.53919847   [ANSWER]

**********************************

b)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.025          
X = sample mean =    138.5          
z(alpha/2) = critical z for the confidence interval =    1.959963985          
s = sample standard deviation =    45.1          
n = sample size =    35          
              
Thus,              

Lower bound =    123.5586235          
Upper bound =    153.4413765  
Margin of Error E =    14.94137654   [ANSWER]

*********************************

c)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.005          
X = sample mean =    138.5          
z(alpha/2) = critical z for the confidence interval =    2.575829304          
s = sample standard deviation =    45.1          
n = sample size =    35          
              
Thus,          
  
Lower bound =    118.8637027          
Upper bound =    158.1362973
Margin of Error E =    19.63629732   [ANSWER]      

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote