Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

QUESTION 21 Araaltor used the agression model y-bata0 bata1x1 2K2 epsilon 10 pre

ID: 3176208 • Letter: Q

Question

QUESTION 21 Araaltor used the agression model y-bata0 bata1x1 2K2 epsilon 10 predirt seling prices of hamas lin thousands of Tha variable x1 represents the home size isquare factu, and x2 represents the number be Tha talowi information s available: ANOVA Source DF SS MS Regression 6101.6 219.6 Standard E Intercept 26.28 22.88 Size 5.07 20.103 Ded G.G97 30 ed squ predi remains unchanged increases by about 20.18 dolara Increases hy ahour 201839 dalars increases by about 20,183 dolars QUESTION 22 Arealtor used the regression model y beta0 bata1x1 eta2K2 epsilon, to predi scling ricos of homes lin ands of The variable x1 represents the home size isqu fectl, and x2 represents the number of bedrooms. The folowing information is available: DF SS MS Regression 61016 219.6 Enattirent Standard intercep: 26.28 22.88 Size 50 20.183 Bed 3.0 Whet is SE estimated regression equation? 5.24 196 219.6 27.45

Explanation / Answer

Question-21:

ANOVA table

Source                                  df                            ss                            ms                                          f

Regression                          2                         6101.6             6101.6/2=3050.8                        3050.8/27.45=111.14

Error                          10-2=8                         219.6               219.6/8=27.45

Total                              10                  6101.6+219.6=6321.2

If for a fixed square footage, a house has one extra bedroom, the predicted selling price increases by about 20.183 dollars

Question-22:

ANOVA table

Source                                  df                            ss                            ms                                          f

Regression                          2                         6101.6             6101.6/2=3050.8                        3050.8/27.45=111.14

Error                          10-2=8                         219.6               219.6/8=27.45

Total                              10                  6101.6+219.6=6321.2

Mean square error MSE of the estimated regression equation =219.6/8=27.45

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote