Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

For chart A2 recalculate the correlation, confidence interval, and P-value (95%

ID: 3183460 • Letter: F

Question

For chart A2 recalculate the correlation, confidence interval, and P-value (95% two-sided). Discuss how this differs from A1 analysis with all 14 cases.

Dataset A1

county

dist

phome

tran_dist

Zphome

Ztran_dist

Zx*Zy

BERKSHIRE

97

77

0.9897

FRANKLIN

62

81

0.9839

HAMPSHIRE

54

75

0.9815

HAMPDEN

52

69

0.9808

WORCESTER

20

64

0.9500

MIDDLESEX

14

47

0.9286

ESSEX

10

47

0.9000

SUFFOLK

4

6

0.7500

NORFOLK

14

49

0.9286

BRISTOL

14

60

0.9286

PLYMOUTH

16

68

0.9375

BARNSTABLE

44

76

0.9773

NANTUCKET

77

25

0.9870

DUKES

52

79

0.9808

N = 14

58.8(22.04)

0.9432(0.0627)

Dataset A2

county

dist

phome

tran_dist

Zphome

Ztran_dist

Zx*Zy

BERKSHIRE

97

77

0.9897

FRANKLIN

62

81

0.9839

HAMPSHIRE

54

75

0.9815

HAMPDEN

52

69

0.9808

WORCESTER

20

64

0.9500

MIDDLESEX

14

47

0.9286

ESSEX

10

47

0.9000

NORFOLK

14

49

0.9286

BRISTOL

14

60

0.9286

PLYMOUTH

16

68

0.9375

BARNSTABLE

44

76

0.9773

DUKES

52

79

0.9808

N = 12

66.0(12.65)

0.9556(0.0302)

For chart A2 recalculate the correlation, confidence interval, and P-value (95% two-sided). Discuss how this differs from A1 analysis with all 14 cases.

Dataset A1

county

dist

phome

tran_dist

Zphome

Ztran_dist

Zx*Zy

BERKSHIRE

97

77

0.9897

FRANKLIN

62

81

0.9839

HAMPSHIRE

54

75

0.9815

HAMPDEN

52

69

0.9808

WORCESTER

20

64

0.9500

MIDDLESEX

14

47

0.9286

ESSEX

10

47

0.9000

SUFFOLK

4

6

0.7500

NORFOLK

14

49

0.9286

BRISTOL

14

60

0.9286

PLYMOUTH

16

68

0.9375

BARNSTABLE

44

76

0.9773

NANTUCKET

77

25

0.9870

DUKES

52

79

0.9808

N = 14

58.8(22.04)

0.9432(0.0627)

Dataset A2

county

dist

phome

tran_dist

Zphome

Ztran_dist

Zx*Zy

BERKSHIRE

97

77

0.9897

FRANKLIN

62

81

0.9839

HAMPSHIRE

54

75

0.9815

HAMPDEN

52

69

0.9808

WORCESTER

20

64

0.9500

MIDDLESEX

14

47

0.9286

ESSEX

10

47

0.9000

NORFOLK

14

49

0.9286

BRISTOL

14

60

0.9286

PLYMOUTH

16

68

0.9375

BARNSTABLE

44

76

0.9773

DUKES

52

79

0.9808

N = 12

66.0(12.65)

0.9556(0.0302)

Explanation / Answer

There are different data points in the datasets A1 and A2. For example, the cities SUFFOLK and NANTUCKET of A1 are not available in A2. We first import the data to R and then calculate the correlation, confidence inteval, and p-value for the two datasets.

> tt <- read.csv("clipboard",sep=" ")
> head(tt)
     county dist phome tran_dist
1 BERKSHIRE   97    77    0.9897
2 FRANKLIN   62    81    0.9839
3 HAMPSHIRE   54    75    0.9815
4   HAMPDEN   52    69    0.9808
5 WORCESTER   20    64    0.9500
6 MIDDLESEX   14    47    0.9286
> cor.test(tt$dist,tt$phome)

        Pearson's product-moment correlation

data: tt$dist and tt$phome
t = 1.5683, df = 12, p-value = 0.1428
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.1512340 0.7737076
sample estimates:
      cor
0.4124404

> ttB <- read.csv("clipboard",sep=" ")
> head(ttB)
     county dist phome tran_dist
1 BERKSHIRE   97    77    0.9897
2 FRANKLIN   62    81    0.9839
3 HAMPSHIRE   54    75    0.9815
4   HAMPDEN   52    69    0.9808
5 WORCESTER   20    64    0.9500
6 MIDDLESEX   14    47    0.9286
> cor.test(ttB$dist,ttB$phome)

        Pearson's product-moment correlation

data: ttB$dist and ttB$phome
t = 4.0534, df = 10, p-value = 0.002311
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.3918448 0.9379377
sample estimates:
      cor
0.7884414

Removing the two datapoints from the first set A makes the correlation significant.

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote