A police helicopter is flying due north at 100 mi/h and at a constant altitude o
ID: 3191251 • Letter: A
Question
A police helicopter is flying due north at 100 mi/h and at a constant altitude of 1/2 mi. Below, a car is traveling west on a highway at 75 mi/h. At the moment the helicopter crosses over the highway, the car is 4 mi east of the helicopter. How fast is the distance between the car and helicopter changing at the moment the helicopter crosses the highway? [Round your answer to 1 decimal place.] The distance between the car and the helicopter is changing at a rate of mi/h at the moment the helicopter crosses the highway. Is the distance between the car and helicopter increasing or decreasing at that moment?Explanation / Answer
Origin= crossing
Coordinates of helicopter(along y-axis,North dirn) = (0,y,0.5)
Coordinates of car(along x-axis) = (x,0,0)
x2 + y2 +0.52=d2
d=distance b/w the two vehicles
differentiating,
x.x` + y.y` = d.d`
4*(-75) + 0 = 0.52+42 * d`
a) d` = -74.42 mil/h
b) Distance between them is DECREASING
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.