Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Which of the two regression function would you suggest Nolan used for prediction

ID: 3198352 • Letter: W

Question

Which of the two regression function would you suggest  Nolan used for prediction purposes.?


Customers (in 1000s), X

Line Maintenance Expense (in $1000s), Y

X^2

Y^2

XY

1

25.3

484.6

640.09

234837.2

12260.38

2

36.4

672.3

1324.96

451987.3

24471.72

3

37.9

839.4

1436.41

704592.4

31813.26

4

45.9

694.9

2106.81

482886

31895.91

5

53.4

836.4

2851.56

699565

44663.76

6

66.8

681.9

4462.24

464987.6

45550.92

7

78.4

1037

6146.56

1075369

81300.8

8

82.6

1095.6

6822.76

1200339

90496.56

9

93.8

1563.1

8798.44

2443282

146618.8

10

97.5

1377.9

9506.25

1898608

134345.3

11

105.7

1711.7

11172.49

2929917

180926.7

12

124.3

2138.6

15450.49

4573610

265828

Total

848

13133.4

70719.06

17159981

1090172

Slope:

?=(n?(xy)??x?y)/(n?x2?(?x)2)

Offset:

?=(?y???x)/n

regression equation:

y=?x+?

?

15.02

?

33.32

regression equation: Line Maintenance Expense = 15.02*Customers+33.32

Customers

75

(in 000's)

Line Maintenance Expense (in $1000s)

$          1,159.52

total level of line maintenance expense=

$ 1,159,519.26


Customers (in 1000s), X

Line Maintenance Expense (in $1000s), Y

X^2

Y^2

XY

25.3

484.6

640.09

234837.16

12260.38

36.4

672.3

1324.96

451987.29

24471.72

37.9

839.4

1436.41

704592.36

31813.26

45.9

694.9

2106.81

482886.01

31895.91

53.4

836.4

2851.56

699564.96

44663.76

66.8

681.9

4462.24

464987.61

45550.92

78.4

1037

6146.56

1075369

81300.8

82.6

1095.6

6822.76

1200339.36

90496.56

93.8

1563.1

8798.44

2443281.61

146618.78

97.5

1377.9

9506.25

1898608.41

134345.25

105.7

1711.7

11172.49

2929916.89

180926.69

124.3

2138.6

15450.49

4573609.96

265827.98

Total

848

13133.4

70719.06

17159980.62

1090172.01


Customers (in 1000s), X

Line Maintenance Expense (in $1000s), Y

X^2

Y^2

XY

1

25.3

484.6

640.09

234837.2

12260.38

2

36.4

672.3

1324.96

451987.3

24471.72

3

37.9

839.4

1436.41

704592.4

31813.26

4

45.9

694.9

2106.81

482886

31895.91

5

53.4

836.4

2851.56

699565

44663.76

6

66.8

681.9

4462.24

464987.6

45550.92

7

78.4

1037

6146.56

1075369

81300.8

8

82.6

1095.6

6822.76

1200339

90496.56

9

93.8

1563.1

8798.44

2443282

146618.8

10

97.5

1377.9

9506.25

1898608

134345.3

11

105.7

1711.7

11172.49

2929917

180926.7

12

124.3

2138.6

15450.49

4573610

265828

Total

848

13133.4

70719.06

17159981

1090172

Slope:

?=(n?(xy)??x?y)/(n?x2?(?x)2)

Offset:

?=(?y???x)/n

regression equation:

y=?x+?

?

15.02

?

33.32

regression equation: Line Maintenance Expense = 15.02*Customers+33.32

Customers

75

(in 000's)

Line Maintenance Expense (in $1000s)

$          1,159.52

total level of line maintenance expense=

$ 1,159,519.26


Explanation / Answer

The regression equation is
The regression equation is , where m is the slope and c is the y-intercept.

And m is given by the method of least squares as
.

Then the y-intercept ‘c’ is given by     .

There are two tables of calculations given in the question , in which the first table have some error, and the table given in the end of the question is correct. In the first table the headings of each coloumn are misplaced.

The second table of calculations and all other calculations are correct.

ie.

Here X=Customers (in 1000s), Y=Line Maintenance Expense (in $1000s),and hence we can the regression equation

Line Maintenance Expense = 15.02*Customers+33.32 .

Then

Customers (in 1000s), X Line Maintenance Expense (in $1000s), Y X^2 Y^2 XY 25.3 484.6 640.09 234837.2 12260.38 36.4 672.3 1324.96 451987.3 24471.72 37.9 839.4 1436.41 704592.4 31813.26 45.9 694.9 2106.81 482886 31895.91 53.4 836.4 2851.56 699565 44663.76 66.8 681.9 4462.24 464987.6 45550.92 78.4 1037 6146.56 1075369 81300.8 82.6 1095.6 6822.76 1200339 90496.56 93.8 1563.1 8798.44 2443282 146618.78 97.5 1377.9 9506.25 1898608 134345.25 105.7 1711.7 11172.49 2929917 180926.69 124.3 2138.6 15450.49 4573610 265827.98 Total 848 13133.4 70719.06 17159981 1090172.01
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote