I\'m experimenting with a consumer-grade ElectroEncephaloGram (EEG) sensor and h
ID: 32087 • Letter: I
Question
I'm experimenting with a consumer-grade ElectroEncephaloGram (EEG) sensor and have created the image below using the device. Because the sensor on the device does not use a suction cup, there are a lot of motion artifacts when the headband contact is poor (during motion).
This got me thinking - neurons have mass and thus inertia, and they are not glued to each other. When the person moves (actually rotates) the head around, forces of inertia are applied to neurons/axons. I'm interested if such motion produces any kind of firing artifacts within the brain or how the brain filters out such firing?
This reminded me of this article: (5-HT and motor control: a hypothesis). Could it be that some neurons stop firing in response to movement?
Explanation / Answer
There are certainly head-orientation cells (e.g. in the hippocampus). But neurons are reasonably immune to the kind of mild physical stresses that come from turning the head around; computing head orientation requires complex analysis of input from e.g. the visual system (optic flow) and vestibular system.
However, the electrical activity of muscles tends to swamp that of (nearby) neurons, so various muscle-related artifacts are often visible in an EEG if not carefully filtered out. And, of course, if the contact is poor you'll get artifacts from that: you're just measuring the variability in resistance between the sensor and your skin, not anything interesting about what faint potential changes are visible at your skin as a result of neuronal activity.
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.