Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

An important application of regression analysis in accounting is in the estimati

ID: 3234825 • Letter: A

Question

An important application of regression analysis in accounting is in the estimation of cost. By collecting data on volume and cost and using the least squares method to develop an estimated regression equation relating volume and cost, an accountant can estimate the cost associated with a particular manufacturing volume. Consider the following sample of production volumes and total cost data for a manufacturing operation. Excel File: data14-21.xls a. Compute b_1 and b_0 (to 2 decimals if necessary). b_1 b_0 Complete the estimated regression equation (to 2 decimals if necessary). y = + x b. What is the variable cost per unit produced (to 1 decimal)? c. Compute the coefficient of determination (to 4 decimals). r^2 What percentage of the variation in total cost can be explained by the production volume (to 2 decimals)? % d. The company's production schedule shows 500 units must be produced next month. What is the estimated total cost for this operation (to 2 decimals)? $

Explanation / Answer

Result:

a).

b1=7.60

b0==1246.67

y=1246.67+7.60x

b).

7.6

c).0.9587

95.87%

d).5046.67

Regression Analysis

0.9587

n

6

r

0.9791

k

1

Std. Error

241.5229

Dep. Var.

y

ANOVA table

Source

SS

df

MS

F

p-value

Regression

5,415,000.0000

1  

5,415,000.0000

92.83

.0006

Residual

233,333.3333

4  

58,333.3333

Total

5,648,333.3333

5  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=4)

p-value

95% lower

95% upper

Intercept

1,246.6667

464.1599

2.686

.0549

-42.0479

2,535.3812

x

7.6000

0.7888

9.635

.0006

5.4099

9.7901

Predicted values for: y

95% Confidence Interval

95% Prediction Interval

x

Predicted

lower

upper

lower

upper

Leverage

500

5,046.667

4,727.409

5,365.924

4,303.971

5,789.362

0.227

Regression Analysis

0.9587

n

6

r

0.9791

k

1

Std. Error

241.5229

Dep. Var.

y

ANOVA table

Source

SS

df

MS

F

p-value

Regression

5,415,000.0000

1  

5,415,000.0000

92.83

.0006

Residual

233,333.3333

4  

58,333.3333

Total

5,648,333.3333

5  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=4)

p-value

95% lower

95% upper

Intercept

1,246.6667

464.1599

2.686

.0549

-42.0479

2,535.3812

x

7.6000

0.7888

9.635

.0006

5.4099

9.7901

Predicted values for: y

95% Confidence Interval

95% Prediction Interval

x

Predicted

lower

upper

lower

upper

Leverage

500

5,046.667

4,727.409

5,365.924

4,303.971

5,789.362

0.227

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote