Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Hi, In Statistics, I am running a maximum-likelihood on SAS 9.4, and I got the f

ID: 3239769 • Letter: H

Question

Hi,

In Statistics, I am running a maximum-likelihood on SAS 9.4,

and I got the following results

The AUTOREG Procedure

Ordinary Least Squares Estimates

SSE

19239.7836

DFE

237

MSE

81.18052

Root MSE

9.01002

SBC

1738.00254

AIC

1731.04961

MAE

6.98533005

AICC

1731.10046

MAPE

210.912182

HQC

1733.85145

Durbin-Watson

2.3543

Regress R-Square

0.1756

Total R-Square

0.1756

Parameter Estimates

Variable

DF

Estimate

Standard
Error

t Value

Approx
Pr > |t|

Intercept

1

-0.4406

0.5829

-0.76

0.4504

urateg

1

-0.4721

0.0665

-7.10

<.0001

Estimates of Autocorrelations

Lag

Covariance

Correlation

-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0

80.5012

1.000000

|                    |********************|

1

-14.3270

-0.177972

|                ****|                    |

Preliminary MSE

77.9514

Estimates of Autoregressive Parameters

Lag

Coefficient

Standard
Error

t Value

1

0.177972

0.064055

2.78

Algorithm converged.

SAS System

The AUTOREG Procedure

Maximum Likelihood Estimates

SSE

18474.378

DFE

236

MSE

78.28126

Root MSE

8.84767

SBC

1733.82498

AIC

1723.39559

MAE

6.81537191

AICC

1723.49772

MAPE

245.544664

HQC

1727.59835

Log Likelihood

-858.69779

Regress R-Square

0.2727

Durbin-Watson

2.0365

Total R-Square

0.2084

Observations

239

Parameter Estimates

Variable

DF

Estimate

Standard
Error

t Value

Approx
Pr > |t|

Intercept

1

-0.4281

0.4706

-0.91

0.3640

urateg

1

-0.5640

0.0619

-9.12

<.0001

AR1

1

0.2171

0.0656

3.31

0.0011

Autoregressive parameters assumed given

Variable

DF

Estimate

Standard
Error

t Value

Approx
Pr > |t|

Intercept

1

-0.4281

0.4706

-0.91

0.3640

urateg

1

-0.5640

0.0600

-9.41

<.0001

And I have no single idea what these means...

Is my data good to use? How do I know?? Please help me! Thanks!!

Ordinary Least Squares Estimates

SSE

19239.7836

DFE

237

MSE

81.18052

Root MSE

9.01002

SBC

1738.00254

AIC

1731.04961

MAE

6.98533005

AICC

1731.10046

MAPE

210.912182

HQC

1733.85145

Durbin-Watson

2.3543

Regress R-Square

0.1756

Total R-Square

0.1756

Explanation / Answer

If you see the two tables named "ordinary least square estimates" and "maximum likelihood estimates" , you can observe the R square values. In first table it is 0.1756 which means only about 17% of variation in data is explained by the model you fitted which implies its not well fitted.In other words the autoregressive model you have fit is useless. Again in the second table you observe the R square value is 0.2084,means only about 21% of the variation in the data is accounted by your model which is too less. So,dont worry about the other figures cause you need to fit another model or need to transform the data or use some other remedy accordingly

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote