Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Given are five observations for two variables, x and y. a. Develop the regressio

ID: 3273440 • Letter: G

Question

Given are five observations for two variables, x and y. a. Develop the regression equation by computing the values of beta_0 and beta_1. b. Use the estimated regression equation to predict the value of y when x = 6. c. Compute SSE, SST, and SSR. d. Compute the coefficient of determination r^2. Comment on the goodness of fit. e. Compute the sample correlation coefficient. f. Compute the mean square error (MSE). g. Compute the standard error of the estimate. h. Compute the estimated standard deviation of beta_1. i. Use the t-test to test the following hypotheses at the 5% significance level: H_0: beta_1 = 0 H_1: beta_1 notequalto 0 Is beta_1 significant at the 5% level? j. Construct a 99% confidence interval for beta_1.

Explanation / Answer

Answer:

a).

0=30.3312   1= -1.8766

b).

the estimated regression line is y=30.3312   -1.8766*x

when x=6, predicted y=30.3312   -1.8766*6

=19.0716

c).

SSE=6.3312

SST=114.80

SSR =108.4688

d).

R square = 0.945

94.5% of variation in y is explained by x.

e).

correlation coefficient r= -0.972

f).

MSE=2.1104

g).

standard error =1.453

h).

standard error of 1 =0.2618

i).

t=-1.8766/0.2618

= -7.169

Table value of t with 3 DF at 0.05 level =3.18

Reject Ho if calculated t < -3.18 or t>3.18

Calculated t = -7.169 falls in the rejection region.

The null hypothesis is rejected.

1 is significant at 5% level.

j).

99% CI for 1 = (-3.4055, -0.3477).

Regression Analysis

0.945

n

5

r

-0.972

k

1

Std. Error

1.453

Dep. Var.

y

ANOVA table

Source

SS

df

MS

F

p-value

Regression

108.4688

1  

108.4688

51.40

.0056

Residual

6.3312

3  

2.1104

Total

114.8000

4  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=3)

p-value

99% lower

99% upper

Intercept

30.3312

1.1881

25.530

.0001

23.3918

37.2705

x

-1.8766

0.2618

-7.169

.0056

-3.4055

-0.3477

Regression Analysis

0.945

n

5

r

-0.972

k

1

Std. Error

1.453

Dep. Var.

y

ANOVA table

Source

SS

df

MS

F

p-value

Regression

108.4688

1  

108.4688

51.40

.0056

Residual

6.3312

3  

2.1104

Total

114.8000

4  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=3)

p-value

99% lower

99% upper

Intercept

30.3312

1.1881

25.530

.0001

23.3918

37.2705

x

-1.8766

0.2618

-7.169

.0056

-3.4055

-0.3477

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote