Fit a model of the form logy = b0 + b1x. Report the regression outputs and predi
ID: 3292245 • Letter: F
Question
Fit a model of the form logy = b0 + b1x. Report the regression outputs and predict the value of y at x = 8.8491.
x y 5,7379 41,190185 6,9068 139,672445 7,4784 237,816650 7,0299 163,841582 6,9977 172,035354 7,2119 202,046931 6,3912 65,287461 6,2840 85,216920 7,1649 163,301796 6,7259 125,524380 7,0322 138,365675 6,7037 97,651010 6,1147 51,904215 7,3941 237,127981 7,8491 332,985851 6,9601 164,959502 6,5811 132,608344 6,4262 82,855655 7,5490 179,504450 7,1783 216,112693 6,8017 110,697361 7,1801 162,649894 6,8801 129,541332 6,7551 91,049198 6,3809 76,822687 6,4245 98,760724 7,3916 254,042100 6,9892 182,874477Explanation / Answer
Solution
The given data along with z = logy to base 10 are given at the bottom.
Treating z as dependent variable and x as independent variable, the requisite Excel Computations are given below:
n
28
xbar
68,757
zbar
4.83631067
Sxx
603186963
Szz
0.02476322
Sxz
3860.62508
b1
6.4004E-06
b0
4.39623823
Thus, the fitted model is: logy = 4.396 + 0.0000064x ANSWER 1
[Formulae used in the above calculations are:
Mean X = Xbar = (1/n)sum of xi over I = 1, 2, …., n; ……………….(1)
Sxx = sum of (xi – Xbar)2 over i = 1, 2, …., n ………………………………..(2)
Mean Z = Zbar =(1/n)sum of zi over i = 1, 2, …., n;…………….(4)
Szz = sum of (zi – Zbar)2 over i = 1, 2, …., n ………………………………………………(5)
Sxz = sum of {(xi – Xbar)(zi – Zbar)} over i = 1, 2, …., n………(7)
Estimated Regression of Z on X is given by: Z = b0 + b1X, where
b1 = Sxz/Sxx and b0 = Zbar – b1Xbar..…………………….(8)]
Predicted value of logy at x = 8.8491 is: logycap = 4.396 + (0.0000064 x 88491)
= 4.962
So, Predicted value of y at x = 8.8491 is: 104.962 = 91622.05 ANSWER 2
x, y and z = logy values
I
x
y
Z = log10(y)
1
57,379
41,190,185
7.61479374
2
69,068
139,672,445
8.14511074
3
74,784
237,816,650
8.37624226
4
70,299
163,841,582
8.21442413
5
69,977
172,035,354
8.23561771
6
72,119
202,046,931
8.30545226
7
63,912
65,287,461
7.81482978
8
62,840
85,216,920
7.93052583
9
71,649
163,301,796
8.21299096
10
67,259
125,524,380
8.09872808
11
70,322
138,365,675
8.14102837
12
67,037
97,651,010
7.98967674
13
61,147
51,904,215
7.71520263
14
73,941
237,127,981
8.3749828
15
78,491
332,985,851
8.52242578
16
69,601
164,959,502
8.21737734
17
65,811
132,608,344
8.12257085
18
64,262
82,855,655
7.91832215
19
75,490
179,504,450
8.25407522
20
71,783
216,112,693
8.33468028
21
68,017
110,697,361
8.04413727
22
71,801
162,649,894
8.21125378
23
68,801
129,541,332
8.11240836
24
67,551
91,049,198
7.95927612
25
63,809
76,822,687
7.88548949
26
64,245
98,760,724
7.99458427
27
73,916
254,042,100
8.40490569
28
69,892
182,874,477
8.2621531
n
28
xbar
68,757
zbar
4.83631067
Sxx
603186963
Szz
0.02476322
Sxz
3860.62508
b1
6.4004E-06
b0
4.39623823
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.