Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Use R to obtain the following summary statistics for each method: mean, median,

ID: 3354705 • Letter: U

Question

Use R to obtain the following summary statistics for each method: mean, median, standard deviation, variance, and interquartile range. How do you do this? I keep on getting an error? It uses R software

Dog ID Method No.jumps Distance.travelled.cm Duration.jumping.s Longest.jump.cm 1 Control 18 50 25 8 2 Control 15 60.5 22 9.5 3 Control 14 63.5 18 8 4 Control 18 77.5 30 12.5 5 Control 18 51.5 33 7.5 6 Control 12 39 14 5.5 7 Control 18 80 23 11 8 Control 14 57 24 11 9 Control 18 55 34 8 10 Control 12 41 21 9 11 Control 8 18 12 4 12 Control 25 95 40 10 13 Control 15 52 16 11 14 Control 18 63.5 30 9.5 15 Control 14 58 19 8.5 16 Control 27 128 46 9.5 17 Control 18 106.5 17 11 18 Control 18 83.1 25 13.5 19 Control 14 83.5 14 11 20 Control 27 119.5 42 11 21 Control 9 31 6 7.5 22 Control 13 48.5 13 7 23 Control 6 44 12 19 24 Control 14 54 20 10.5 25 Control 9 43.5 7 9 26 Control 11 53 15 15 27 Air 37 194.5 62 15 28 Air 21 99 42 10 29 Air 22 80.5 44 10.5 30 Air 22 67 32 6 31 Air 19 66.5 30 12.5 32 Air 15 45.5 34 8.5 33 Air 19 67 30 7 34 Air 16 37.5 34 5 35 Air 48 230.5 81 13 36 Air 35 112.5 58 8.5 37 Air 42 206 68 12.5 38 Air 10 27 15 5 39 Air 9 26 22 6 40 Air 40 201.5 63 19 41 Air 25 115 41 12 42 Air 12 74.5 19 11 43 Air 19 93.5 20 11 44 Air 40 290 52 26 45 Air 32 209 39 18 46 Air 22 143 23 18 47 Air 26 205.5 38 22 48 Air 11 31.5 22 17 49 Air 15 74.5 18 12 50 Air 25 162 36 20 51 Air 16 58.5 21 8 52 Air 37 363 57 26 53 Recovery 28 117.5 28 9 54 Recovery 14 34 19 5.5 55 Recovery 18 49 30 6 56 Recovery 22 62 31 6 57 Recovery 21 71.5 28 9 58 Recovery 3 7 6 5 59 Recovery 23 71.5 29 6.5 60 Recovery 13 25.5 9 5 61 Recovery 24 61.5 21 7.5 62 Recovery 28 131 26 8 63 Recovery 23 78 25 9 64 Recovery 5 14 5 5 65 Recovery 10 31 10 5 66 Recovery 12 44 18 8.5 67 Recovery 8 26.5 7 6 68 Recovery 8 31.5 10 7.5 69 Recovery 18 40.5 24 7

Explanation / Answer

Firstly, I copy the data that you have provided into an Excel file and convert the file to a .CSV file. The R code now has been pasted below.

# LOADING THE DATA SET ONTO R
data = read.csv("C:\Users\LAPTOP\Desktop\Book1.csv")

# SUBSETTING THE DATA INTO 3 DATASETS, CORRESPONDING TO THE 3 METHODS
data1 = subset(data,Method == "Control",select=c(No.jumps,Distance.travelled.cm,Duration.jumping.s,Longest.jump.cm))
data2 = subset(data,Method == "Air",select=c(No.jumps,Distance.travelled.cm,Duration.jumping.s,Longest.jump.cm))
data3 = subset(data,Method == "Recovery",select=c(No.jumps,Distance.travelled.cm,Duration.jumping.s,Longest.jump.cm))

## FOR DATA 1
# SUMMARY STATISTICS OF THE VARIABLES CORRESPONDING TO THE "CONTROL" METHOD
mean(data1$No.jumps)
median(data1$No.jumps)
sd(data1$No.jumps)
var(data1$No.jumps)
IQR(data1$No.jumps)

mean(data1$Distance.travelled.cm)
median(data1$Distance.travelled.cm)
sd(data1$Distance.travelled.cm)
var(data1$Distance.travelled.cm)
IQR(data1$Distance.travelled.cm)

mean(data1$Duration.jumping.s)
median(data1$Duration.jumping.s)
sd(data1$Duration.jumping.s)
var(data1$Duration.jumping.s)
IQR(data1$Duration.jumping.s)

mean(data1$Longest.jump.cm)
median(data1$Longest.jump.cm)
sd(data1$Longest.jump.cm)
var(data1$Longest.jump.cm)
IQR(data1$Longest.jump.cm)


## FOR DATA 2
# SUMMARY STATISTICS OF THE VARIABLES CORRESPONDING TO THE "AIR" METHOD
mean(data2$No.jumps)
median(data2$No.jumps)
sd(data2$No.jumps)
var(data2$No.jumps)
IQR(data2$No.jumps)

mean(data2$Distance.travelled.cm)
median(data2$Distance.travelled.cm)
sd(data2$Distance.travelled.cm)
var(data2$Distance.travelled.cm)
IQR(data2$Distance.travelled.cm)

mean(data2$Duration.jumping.s)
median(data2$Duration.jumping.s)
sd(data2$Duration.jumping.s)
var(data2$Duration.jumping.s)
IQR(data2$Duration.jumping.s)

mean(data2$Longest.jump.cm)
median(data2$Longest.jump.cm)
sd(data2$Longest.jump.cm)
var(data2$Longest.jump.cm)
IQR(data2$Longest.jump.cm)


## FOR DATA 3
# SUMMARY STATISTICS OF THE VARIABLES CORRESPONDING TO THE "RECOVERY" METHOD
mean(data3$No.jumps)
median(data3$No.jumps)
sd(data3$No.jumps)
var(data3$No.jumps)
IQR(data3$No.jumps)

mean(data3$Distance.travelled.cm)
median(data3$Distance.travelled.cm)
sd(data3$Distance.travelled.cm)
var(data3$Distance.travelled.cm)
IQR(data3$Distance.travelled.cm)

mean(data3$Duration.jumping.s)
median(data3$Duration.jumping.s)
sd(data3$Duration.jumping.s)
var(data3$Duration.jumping.s)
IQR(data3$Duration.jumping.s)

mean(data3$Longest.jump.cm)
median(data3$Longest.jump.cm)
sd(data3$Longest.jump.cm)
var(data3$Longest.jump.cm)
IQR(data3$Longest.jump.cm)