Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

ooo T-Mobile LTE 2:44 PM 87% courses.apexlearning.com nential and Logarithmic Fu

ID: 3407698 • Letter: O

Question

ooo T-Mobile LTE 2:44 PM 87% courses.apexlearning.com nential and Logarithmic Functions SUBMIT Question 21 of 25 Multiple Choice: Please select the best answer and click "submit." What are the domain and range of the exponential function below? F(x) = 5x + 6 0 A. Domain: All real numbers greater than 0 Range: All real numbers greater than 6 O B. Domain: All real numbers greater than 0 Range: All real numbers greater than 0 O C. Domain: All real numbers Range: All real numbers greater than 0 D. Domain: All real numbers Range: All real numbers greater than 6

Explanation / Answer

Given

f(x) = 5x +6

Domain means all possible values that "x" can take so that f(x) is real.

Range means all possible values of "y"

Domain       ->   f(x) = 5x + 6             

                 we can plug any value for "x" here.                 

// lets plug x = 1 we get   f(x) = 51 + 6 => 5+6 => 11        (real)

lets plug x =0 we get    f(x) = 50 + 6 => 1+6 => 7         (real)

x= -1 we get f(x) = 5-1 + 6 => 1/5+6 => 6.2       (real)

since we can plug any value for "x" therefore domain is all real number

Range

f(x) = 5x + 6   // 5x plugging any value for "x" will be greater then zero and "+6" so the range will be greater then "6".

lets plug x = 1 we get   f(x) = 51 + 6 => 5+6 => 11       

lets plug x =0 we get    f(x) = 50 + 6 => 1+6 => 7        

x= -1 we get f(x) = 5-1 + 6 => 1/5+6 => 6.2   

we can see that we plugging any value for "x" we get f(x) > 6  

option (d)