State the actual number of real zeros of each function. f(x) = -x^4 + 4x^2 + 2x
ID: 3412185 • Letter: S
Question
State the actual number of real zeros of each function. f(x) = -x^4 + 4x^2 + 2x - 2 # Real Zeros: 3 # # Real Zeros: 2 # Real Zeros: 1 # Real Zeros: 0 f(x) = x^3 - 3x^2 + 5 # Real Zeros: 1 # Real Zeros: 0 # Real Zeros: 2 # Real Zeros: 3 Approximate the real zeros of each function to the nearest tenth. f(x) = x^4 - 3x^2 -2x - 1 # Real Zeros: x = -2.1, x = 1.6 Real Zeros: x = -1, x = 1.4 Real Zeros: x = -1.4, x = 2.1 Real Zeros: x = -1 f(x) = -x^3 + 3x^2 - 4 Real Zeros: x = 3 Real Zeros: x = -4 Real Zeros: x = -1, x = 2 Real Zeros: x = 0, x = -4 f(x) = -x^4 + x^3 +x^2 - 4 Real Zeros: x = 0 Real Zeros: x = 1.2 Real Zeros: None Real Zeros: x = -0.4, x = 1.2 f(x) = x^3 - 4x^2 + 2 Real Zeros: x = -0.7, x = 0.8, x = 3.9 Real Zeros: x = -0.7, x = 2, x = 3.9 Approximate the relative minimum and relative maxima of each function to the nearest tenth. f(x) = x^4 - 4x^2 + 3x + 5 Minima: (-1.6, -3.5) Maxima: (0.4,5.6) Minima: (-0.7, 3.8), (0,7,3.8) Maxima: (0,4) Minima: None Maxima: (0,2,2.2) Minima: (-1.6, -3.5), (1.2, 4.9) Maxima: (0.4,5.6) f(x) = -x^2 + 3x^2 - 3 Minima: (0, 2) Maxima: (1.3, 3.2) Minima: (2,1) Maxima: (0,-3) Minima: (0, 3) Maxima: (1.3,4.2) Minima: (0, -3) Maxima: (2, 1) Solve each system. 5x - 7y - 5z = 1 5x + 5y + 4z = 25 -5x + y - 2z = -13 (3,2,0) Infinitely many solutions (2, 4, 3) (4, 2, 3) x - y - 6z = -14 -2x - 5y = 15 6x + 4y + z = 14 (4,2,-6) (5,-5,4) (-2, 0, 6) (-6, 4,2)Explanation / Answer
51. -x4 + 4x2 + 2x - 2
To find the real zeroes, we have to check the sign change of the terms.
Here, we can notice that sign change is only twice.
First from first to second term.
Second from third to fourth term.
Hence, real zeroes are 2.
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.