Identify and determine the nature of the critical points of the given function.
ID: 3414561 • Letter: I
Question
Identify and determine the nature of the critical points of the given function.f(x,y) = x^2 - y^3 - x^2*y + y
Explanation / Answer
Calculate the partial derivatives fx=2x-2xy fy=-3y^2-x^2+1 fx=0 ==> 2x(1-y)=0 ==> x=0 or y=1 fy=0 ==> if x=0, y=+-sqrt(1/3) and if y=1, x=+-sqrt(2) Look at the second partial derivatives (Hessian matrix) fxx=2-2y fxy=fyx=-2x fyy=-6y At (0,sqrt(1/3)) fxx=2-2/sqrt(3)>0, fxy=0, fyy=-6/sqrt(3)=-2sqrt(3)0, fxy=0, fyy=6/sqrt(3) > 0 So, the determinant is positive and fxx is positive, so the point is a local minima At (sqrt(2),1) fxx=0, fxy=-2sqrt(2), fyy=-6 The determinant is 0-(-2sqrt(2))^2Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.