Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Hint: Lots of numbers to “crunch” here – be careful! If you’d like, use EXCEL to

ID: 361469 • Letter: H

Question

Hint: Lots of numbers to “crunch” here – be careful! If you’d like, use EXCEL to make the calculations easier. You can copy and paste the table to excel.

The following table contains the measurements of the key length dimension from a fuel injector. These samples of size five were taken at one-hour intervals. Use three-sigma control limits. Use Exhibit 10.13.

OBSERVATIONS

a. Determine X=X and RR . (Do not round intermediate calculations. Round your answers to 3 decimal places.)

b. Determine the UCL and LCL for a %media:formula252.mml%-chart. (Do not round intermediate calculations. Round your answers to 3 decimal places.)

c. Determine the UCL and LCL for R-chart. (Leave no cells blank - be certain to enter "0" wherever required. Do not round intermediate calculations. Round your answers to 3 decimal places.)

d. What comments can you make about the process?

The process is out of statistical control.

The process is in statistical control.

OBSERVATIONS

SAMPLE NUMBER 1 2 3 4 5 1 0.480 0.497 0.489 0.515 0.482 2 0.479 0.496 0.513 0.488 0.526 3 0.504 0.496 0.506 0.479 0.518 4 0.503 0.496 0.476 0.478 0.481 5 0.481 0.502 0.519 0.453 0.484 6 0.481 0.496 0.497 0.495 0.501 7 0.503 0.513 0.490 0.475 0.512 8 0.512 0.541 0.492 0.476 0.491 9 0.495 0.541 0.508 0.499 0.512 10 0.505 0.497 0.513 0.515 0.489 11 0.504 0.476 0.452 0.498 0.491 12 0.461 0.467 0.529 0.499 0.517 13 0.513 0.513 0.495 0.518 0.511 14 0.495 0.518 0.497 0.499 0.505 15 0.502 0.513 0.491 0.515 0.512 16 0.479 0.496 0.413 0.471 0.529 17 0.464 0.475 0.412 0.481 0.488 18 0.501 0.489 0.352 0.482 0.475 19 0.500 0.526 0.478 0.489 0.497 20 0.485 0.490 0.326 0.499 0.513

Explanation / Answer

Following table presents the values for each sample from which Mean as well as Range for data against each sample have been calculated and presented

It is to be noted that :

Mean for any sample number = Sum of 5 observations / 5

Range for any sample number = Highest value – Lowest value in that sample

Total for Mean = Sum of all mean values ( total 20 sets of data)

Total for Range = Sum of all range values ( total 20 sets of data )

O B S E R V A T I O N ------------------------------>>>>

Sample Number

1

2

3

4

5

Mean

Range

1

0.48

0.497

0.489

0.515

0.482

0.4926

0.035

2

0.479

0.496

0.513

0.488

0.526

0.5004

0.047

3

0.504

0.496

0.506

0.479

0.518

0.5006

0.039

4

0.503

0.496

0.476

0.478

0.481

0.4868

0.027

5

0.481

0.502

0.519

0.453

0.484

0.4878

0.066

6

0.481

0.496

0.497

0.495

0.501

0.494

0.02

7

0.503

0.513

0.49

0.475

0.512

0.4986

0.038

8

0.512

0.541

0.492

0.476

0.491

0.5024

0.065

9

0.495

0.541

0.508

0.499

0.512

0.511

0.046

10

0.505

0.497

0.513

0.515

0.489

0.5038

0.026

11

0.504

0.476

0.452

0.498

0.491

0.4842

0.052

12

0.461

0.467

0.529

0.499

0.516

0.4944

0.068

13

0.513

0.513

0.495

0.518

0.511

0.51

0.023

14

0.495

0.518

0.497

0.499

0.505

0.5028

0.023

15

0.502

0.513

0.491

0.515

0.512

0.5066

0.024

16

0.479

0.496

0.413

0.471

0.529

0.4776

0.116

17

0.464

0.475

0.412

0.481

0.488

0.464

0.076

18

0.501

0.489

0.352

0.482

0.475

0.4598

0.149

19

0.5

0.526

0.478

0.489

0.497

0.498

0.048

20

0.485

0.49

0.326

0.499

0.513

0.4626

0.187

TOTAL:

9.838

1.175

Thus,

Xbar-bar

= Sum of mean values/ Number of observations

= 9.838/ 20

= 0.4919

Rbar

= Sum of Range values / Number of observations

= 1.175/20

= 0.05875

Given ,

Sample size = n = 5

The Relevant values of constants as derived from standard table of constants for Xbar and R charts as follows :

A2 = 0.577

D4 = 2.114

D3 = 0

Control Charts for Xbar chart :

Upper Control Limit = UCL

= Xbr-bar + A2.Rbar

= 0.4919 + 0.577 x 0.05875

= 0.4919 + 0.0339

= 0.5258

Lower Control Limit = LCL

= Xbr-bar - A2.Rbar

= 0.4919 - 0.577 x 0.05875

= 0.4919 - 0.0339

= 0.458

Control Chart for R chart :

Upper Control Limit = UCL = D4.Rbar = 2.114 x 0.05875 = 0.1242

Lower Control Limit = LCL = 0

O B S E R V A T I O N ------------------------------>>>>

Sample Number

1

2

3

4

5

Mean

Range

1

0.48

0.497

0.489

0.515

0.482

0.4926

0.035

2

0.479

0.496

0.513

0.488

0.526

0.5004

0.047

3

0.504

0.496

0.506

0.479

0.518

0.5006

0.039

4

0.503

0.496

0.476

0.478

0.481

0.4868

0.027

5

0.481

0.502

0.519

0.453

0.484

0.4878

0.066

6

0.481

0.496

0.497

0.495

0.501

0.494

0.02

7

0.503

0.513

0.49

0.475

0.512

0.4986

0.038

8

0.512

0.541

0.492

0.476

0.491

0.5024

0.065

9

0.495

0.541

0.508

0.499

0.512

0.511

0.046

10

0.505

0.497

0.513

0.515

0.489

0.5038

0.026

11

0.504

0.476

0.452

0.498

0.491

0.4842

0.052

12

0.461

0.467

0.529

0.499

0.516

0.4944

0.068

13

0.513

0.513

0.495

0.518

0.511

0.51

0.023

14

0.495

0.518

0.497

0.499

0.505

0.5028

0.023

15

0.502

0.513

0.491

0.515

0.512

0.5066

0.024

16

0.479

0.496

0.413

0.471

0.529

0.4776

0.116

17

0.464

0.475

0.412

0.481

0.488

0.464

0.076

18

0.501

0.489

0.352

0.482

0.475

0.4598

0.149

19

0.5

0.526

0.478

0.489

0.497

0.498

0.048

20

0.485

0.49

0.326

0.499

0.513

0.4626

0.187

TOTAL:

9.838

1.175

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote