Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Question No1: Let r 1 = b(a+b)* r 2 = (a+b)*a FA 1 corresponding to r 1 FA 2 cor

ID: 3615141 • Letter: Q

Question

Question No1:                                                                                                                                 

Let

          r1= b(a+b)*

          r2= (a+b)*a

FA1 corresponding to r1

FA2 corresponding to r2


Using the FAs corresponding to r1 and r2,Build an FA corresponding to

a)      r1+ r2(Union of r1 and r2).

b)      r1r2(Concatenation of r1 and r2).

c)      r2* (Closure ofr2).

Note :You have to specifytransition table and transition diagram for eachpart(a)(b)(c)


Explanation / Answer

Note :You have to specifytransition table and transition diagram for eachpart(a)(b)(c)

Answer.

                       a) r1 + r2

Old States

New States after reading

a

b

z1 - (x1,y1)

(x3,y2) z2

(x2,y1) z3

z2 + (x3,y2)

(x3,y2) z2

(x3,y1) z4

z3 + (x2,y1)

(x2,y2) z5

(x2,y1) z3

z4 (x3,y1)

(x3,y2) z2

(x3,y1) z4

z5 + (x2,y2)

(x2,y2) z5

(x2,y1) z3

DRAW DIAGRAM YOURSELF BY JUST FOLLOWING THE STATES GIVEN INABOVE TABLE

                       b) r1r2

Old States

New States after reading

a

b

z1 - x1

x3 z2

(x2,y1) z3

z2 x3

x3 z2

x3 z2

z3 (x2,y1)

(x2,y1,y2) z4

(x2,y1) z3

z4 + (x2,y1,y2)

(x2,y1,y2) z4

(x2,y1) z3

DRW DIAGRAM YOURSELF BY JUST FOLLOWING THE STATES GIVEN IN ABOVETABLE

                       a) r2*

Old States

New States after reading

a

b

Final z1 ± y1

(y2,y1) z3

y1 z2

Non-Final z2 y1

(y2,y1) z3

y1 z2

z3 + (y2,y1)

(y2,y1) z3

y1 z2

DRW DIAGRAM YOURSELF BY JUST FOLLOWING THE STATES GIVEN IN ABOVETABLE

Question No 2: Marks: 5

Convert the following NFA into FA.

Answer.

Draw diagram yourself.

Old States

New States after reading

a

b

-Q0

Q1

There is no transition showing b in this case

+Q1

Q1

Q2

Q2

Q1

There is no transition showing a in this case

Old States

New States after reading

a

b

z1 - (x1,y1)

(x3,y2) z2

(x2,y1) z3

z2 + (x3,y2)

(x3,y2) z2

(x3,y1) z4

z3 + (x2,y1)

(x2,y2) z5

(x2,y1) z3

z4 (x3,y1)

(x3,y2) z2

(x3,y1) z4

z5 + (x2,y2)

(x2,y2) z5

(x2,y1) z3

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote