Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

1. Give pseudo-code to determine if a point t lies inside a triangle with vertic

ID: 3665927 • Letter: 1

Question

1. Give pseudo-code to determine if a point t lies inside a triangle with vertices p, q, and r (in clockwise order, say). A value of true should be returned if t lies on the boundary or inside the triangle, and false otherwise. See Figure 1.

2. Assume that the vertices p1, p2, . . . , pn of an n-sided convex polygon P are given in clockwise order. Give an algorithm that tests if a query point t lies inside the given convex polygon (i.e., it should return true if t lies inside the polygon or on the boundary, and false otherwise). Your algorithm should run in O(log n) time. Hint: The pseudo-code from part 1 might come in useful here.

Please give mathematically precise answer. Give an algorithm for a problem, presenting the following: the algorithm, a justification of its correctness, and a derivation of its running time.

Explanation / Answer

#include <iostream>

using namespace std;

// Define Infinite (Using INT_MAX caused overflow problems)

#define INF 10000

struct Point

{

    int x;

    int y;

};

// Given three colinear points p, q, r, the function checks if

// point q lies on line segment 'pr'

bool onSegment(Point p, Point q, Point r)

{

    if (q.x <= max(p.x, r.x) && q.x >= min(p.x, r.x) &&

            q.y <= max(p.y, r.y) && q.y >= min(p.y, r.y))

        return true;

    return false;

}

// To find orientation of ordered triplet (p, q, r).

// The function returns following values

// 0 --> p, q and r are colinear

// 1 --> Clockwise

// 2 --> Counterclockwise

int orientation(Point p, Point q, Point r)

{

    int val = (q.y - p.y) * (r.x - q.x) -

              (q.x - p.x) * (r.y - q.y);

    if (val == 0) return 0; // colinear

    return (val > 0)? 1: 2; // clock or counterclock wise

}

// The function that returns true if line segment 'p1q1'

// and 'p2q2' intersect.

bool doIntersect(Point p1, Point q1, Point p2, Point q2)

{

    // Find the four orientations needed for general and

    // special cases

    int o1 = orientation(p1, q1, p2);

    int o2 = orientation(p1, q1, q2);

    int o3 = orientation(p2, q2, p1);

    int o4 = orientation(p2, q2, q1);

    // General case

    if (o1 != o2 && o3 != o4)

        return true;

    // Special Cases

    // p1, q1 and p2 are colinear and p2 lies on segment p1q1

    if (o1 == 0 && onSegment(p1, p2, q1)) return true;

    // p1, q1 and p2 are colinear and q2 lies on segment p1q1

    if (o2 == 0 && onSegment(p1, q2, q1)) return true;

    // p2, q2 and p1 are colinear and p1 lies on segment p2q2

    if (o3 == 0 && onSegment(p2, p1, q2)) return true;

     // p2, q2 and q1 are colinear and q1 lies on segment p2q2

    if (o4 == 0 && onSegment(p2, q1, q2)) return true;

    return false; // Doesn't fall in any of the above cases

}

// Returns true if the point p lies inside the polygon[] with n vertices

bool isInside(Point polygon[], int n, Point p)

{

    // There must be at least 3 vertices in polygon[]

    if (n < 3) return false;

    // Create a point for line segment from p to infinite

    Point extreme = {INF, p.y};

    // Count intersections of the above line with sides of polygon

    int count = 0, i = 0;

    do

    {

        int next = (i+1)%n;

        // Check if the line segment from 'p' to 'extreme' intersects

        // with the line segment from 'polygon[i]' to 'polygon[next]'

        if (doIntersect(polygon[i], polygon[next], p, extreme))

        {

            // If the point 'p' is colinear with line segment 'i-next',

            // then check if it lies on segment. If it lies, return true,

            // otherwise false

            if (orientation(polygon[i], p, polygon[next]) == 0)

               return onSegment(polygon[i], p, polygon[next]);

            count++;

        }

        i = next;

    } while (i != 0);

    // Return true if count is odd, false otherwise

    return count&1; // Same as (count%2 == 1)

}

// Driver program to test above functions

int main()

{

    Point polygon1[] = {{0, 0}, {10, 0}, {10, 10}, {0, 10}};

    int n = sizeof(polygon1)/sizeof(polygon1[0]);

    Point p = {20, 20};

    isInside(polygon1, n, p)? cout << "Yes ": cout << "No ";

    p = {5, 5};

    isInside(polygon1, n, p)? cout << "Yes ": cout << "No ";

    Point polygon2[] = {{0, 0}, {5, 5}, {5, 0}};

    p = {3, 3};

    n = sizeof(polygon2)/sizeof(polygon2[0]);

    isInside(polygon2, n, p)? cout << "Yes ": cout << "No ";

    p = {5, 1};

    isInside(polygon2, n, p)? cout << "Yes ": cout << "No ";

    p = {8, 1};

    isInside(polygon2, n, p)? cout << "Yes ": cout << "No ";

    Point polygon3[] = {{0, 0}, {10, 0}, {10, 10}, {0, 10}};

    p = {-1,10};

    n = sizeof(polygon3)/sizeof(polygon3[0]);

    isInside(polygon3, n, p)? cout << "Yes ": cout << "No ";

    return 0;

}

pseducode for triangle

where