Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

You are given T, a undirected tree (i.e. connected and acyclic graph). The objec

ID: 3666825 • Letter: Y

Question

You are given T, a undirected tree (i.e. connected and acyclic graph). The objective is finding two nodes u, v of T s.t. the distance (i.e. the number of edges along the unique path between u and v) is the maximum. Na¨vely, you can try all possible pairs of nodes but this is very slow. Here is a very simple algorithm for this problem that runs in linear time. You start from any node s as the source and perform BFS. Let u be the node with the largest distance from s (i.e. at the largest level). Then you perform a second BFS: this time you use u as the source. Let v be the node with the largest distance from u. Now, prove this claim: the distance between u and v is the largest possible distance between any two nodes on the tree.

Explanation / Answer

We can either use Breadth First Search (BFS) or Depth First Search (DFS) to find path between two vertices. Take the first vertex as source in BFS (or DFS), follow the standard BFS (or DFS). If we see the second vertex in our traversal, then return true. Else return false.

Following are C++ and Java codes that use BFS for finding reachability of second vertex from first vertex.

// C++ program to check if there is exist a path between two vertices

// of a graph.

#include<iostream>

#include <list>

using namespace std;

// This class represents a <span class="cg-intext-span cg-intext-span-reset cgspnlink " data-type="yahoo" data-type-id="10" id="cg_intext_rt_search_4"><a id="cg_intext_rt_search_4_link" class="cg-intext-link-replace cgspnlink" data-type="yahoo" data-type-id="10">directed graph<span class="cg-intext-trigger "></span></a></span> using adjacency list

// representation

class Graph

{

    int V;    // No. of vertices

    list<int> *adj;    // Pointer to an array containing adjacency lists

public:

    Graph(int V); // Constructor

    void addEdge(int v, int w); // function to add an edge to graph

    bool isReachable(int s, int d);

};

Graph::Graph(int V)

{

    this->V = V;

    adj = new list<int>[V];

}

void Graph::addEdge(int v, int w)

{

    adj[v].push_back(w); // Add w to v’s list.

}

// A BFS based function to check whether d is reachable from s.

bool Graph::isReachable(int s, int d)

{

    // Base case

    if (s == d)

      return true;

    // Mark all the vertices as not visited

    bool *visited = new bool[V];

    for (int i = 0; i < V; i++)

        visited[i] = false;

    // Create a queue for BFS

    list<int> queue;

    // Mark the current node as visited and enqueue it

    visited[s] = true;

    queue.push_back(s);

    // it will be used to get all adjacent vertices of a vertex

    list<int>::iterator i;

    while (!queue.empty())

    {

        // Dequeue a vertex from queue and print it

        s = queue.front();

        queue.pop_front();

        // Get all adjacent vertices of the dequeued vertex s

        // If a adjacent has not been visited, then mark it visited

        // and enqueue it

        for (i = adj[s].begin(); i != adj[s].end(); ++i)

        {

            // If this adjacent node is the destination node, then

            // return true

            if (*i == d)

                return true;

            // Else, continue to do BFS

            if (!visited[*i])

            {

                visited[*i] = true;

                queue.push_back(*i);

            }

        }

    }

     

    // If BFS is complete without visiting d

    return false;

}

// Driver program to test methods of graph class

int main()

{

    // Create a graph given in the above diagram

    Graph g(4);

    g.addEdge(0, 1);

    g.addEdge(0, 2);

    g.addEdge(1, 2);

    g.addEdge(2, 0);

    g.addEdge(2, 3);

    g.addEdge(3, 3);

    int u = 1, v = 3;

    if(g.isReachable(u, v))

        cout<< " There is a path from " << u << " to " << v;

    else

        cout<< " There is no path from " << u << " to " << v;

    u = 3, v = 1;

    if(g.isReachable(u, v))

        cout<< " There is a path from " << u << " to " << v;

    else

        cout<< " There is no path from " << u << " to " << v;

    return 0;

}

Output:

There is a path from 1 to 3

// C++ program to check if there is exist a path between two vertices

// of a graph.

#include<iostream>

#include <list>

using namespace std;

// This class represents a <span class="cg-intext-span cg-intext-span-reset cgspnlink " data-type="yahoo" data-type-id="10" id="cg_intext_rt_search_4"><a id="cg_intext_rt_search_4_link" class="cg-intext-link-replace cgspnlink" data-type="yahoo" data-type-id="10">directed graph<span class="cg-intext-trigger "></span></a></span> using adjacency list

// representation

class Graph

{

    int V;    // No. of vertices

    list<int> *adj;    // Pointer to an array containing adjacency lists

public:

    Graph(int V); // Constructor

    void addEdge(int v, int w); // function to add an edge to graph

    bool isReachable(int s, int d);

};

Graph::Graph(int V)

{

    this->V = V;

    adj = new list<int>[V];

}

void Graph::addEdge(int v, int w)

{

    adj[v].push_back(w); // Add w to v’s list.

}

// A BFS based function to check whether d is reachable from s.

bool Graph::isReachable(int s, int d)

{

    // Base case

    if (s == d)

      return true;

    // Mark all the vertices as not visited

    bool *visited = new bool[V];

    for (int i = 0; i < V; i++)

        visited[i] = false;

    // Create a queue for BFS

    list<int> queue;

    // Mark the current node as visited and enqueue it

    visited[s] = true;

    queue.push_back(s);

    // it will be used to get all adjacent vertices of a vertex

    list<int>::iterator i;

    while (!queue.empty())

    {

        // Dequeue a vertex from queue and print it

        s = queue.front();

        queue.pop_front();

        // Get all adjacent vertices of the dequeued vertex s

        // If a adjacent has not been visited, then mark it visited

        // and enqueue it

        for (i = adj[s].begin(); i != adj[s].end(); ++i)

        {

            // If this adjacent node is the destination node, then

            // return true

            if (*i == d)

                return true;

            // Else, continue to do BFS

            if (!visited[*i])

            {

                visited[*i] = true;

                queue.push_back(*i);

            }

        }

    }

     

    // If BFS is complete without visiting d

    return false;

}

// Driver program to test methods of graph class

int main()

{

    // Create a graph given in the above diagram

    Graph g(4);

    g.addEdge(0, 1);

    g.addEdge(0, 2);

    g.addEdge(1, 2);

    g.addEdge(2, 0);

    g.addEdge(2, 3);

    g.addEdge(3, 3);

    int u = 1, v = 3;

    if(g.isReachable(u, v))

        cout<< " There is a path from " << u << " to " << v;

    else

        cout<< " There is no path from " << u << " to " << v;

    u = 3, v = 1;

    if(g.isReachable(u, v))

        cout<< " There is a path from " << u << " to " << v;

    else

        cout<< " There is no path from " << u << " to " << v;

    return 0;

}

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote