Computer graphics class Calculate the plane coefficients (A, B, C and D) of 3 po
ID: 3684983 • Letter: C
Question
Computer graphics class Calculate the plane coefficients (A, B, C and D) of 3 points in a plane defined by P_1, P_2 and P_3. P_1 = (60, 76,12); P_2 = (-30, 38, 78); P_3 = (35, -10, 55); Then determine if the following point P_4 is behind, in front of or on the polygon surface contained within that plane: P_4 = (10, 72, -29); Be sure to show your work. Explain why determining if Point P_4 is behind or in front of the polygon surface relevant to computer graphics applications. Please work out the problem and label which part you are solving. Thank you for your helpExplanation / Answer
P1=(60,76,12)
P2=(-30,38,78)
P3=(35,-10,55)
P4=(10,72,-29)
A= y1 (z2 – z3) + y2 (z3 – z1) + y3 (z1 – z2)
=76(78-55) +38(55-12) + (-10)(12-78)
=76(23) + 38(43) - 10(-66)
=1748 + 1634 + 660
4043
B= z1 (x2 – x3) + z2 (x3 – x1) + z3 (x1 – x2)
=12(-30-35) +78(35-60) + 55(60 -(-30))
=12(-65) + 78(-25) +55(90)
=-780 - 1950+4950
=2220
C= x1 (y2 – y3) + x2 (y3 – y1) + x3 (y1 – y2)
=60(38-(-10)) + (-30)(-10-76) + 35(76-38)
=60(48) -30(-86) + 35(38)
=2880 +2580 + 1330
=6790
D= -x1 (y2 z3 – y3 z2) - x2 (y3 z1 – y1 z3)
= -60(38 *55 - -10 * 78) - (-30)(-10 * 12 - 76*55)
=-60(2090 + 78) -(-30)(-120 - 4180)
=-130080 + 121800
=8280
For P4,
Ax + By + Cz + D
=4040(10) + 2220(72) + 6790(-29) + 8280
=40400 + 159840 - 196910 + 8280
=11610
Since P4>0, P4 lies in front of the polygon surface
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.