Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A prime number is a number that is only evenly divisible by itself and 1. For ex

ID: 3690247 • Letter: A

Question

A prime number is a number that is only evenly divisible by itself and 1. For example, the number 5 is prime because it can only be evenly divided by 1 and 5. The number 6, however, is not prime because it can be divided evenly by 1, 2, 3, and 6. Design a Boolean function called isPrime, that accepts an integer as an argument and returns True if the argument is a prime number, or False otherwise. Use the function in a program that prompts the user to enter a number and then displays a message indicating whether the number is prime. The following modules should be written: getNumber, that accepts a Ref to an integer, prompts the user to enter a number, and accepts that input isPrime, that accepts an integer as an argument and returns True if the argument is a prime number, or False otherwise showPrime, that accepts an integer as an argument , calls isPrime, and displays a message indicating whether the number is prime The main module, that will call getNumber and showPrime Write the pseudo code and paste it below

Explanation / Answer

. # Prime Number Sieve

2. # http://inventwithpython.com/hacking (BSD Licensed)

3.

4. import math

5.

6.

7. def isPrime(num):

8.     # Returns True if num is a prime number, otherwise False.

9.

10.     # Note: Generally, isPrime() is slower than primeSieve().

11.

12.     # all numbers less than 2 are not prime

13.     if num < 2:

14.         return False

15.

16.     # see if num is divisible by any number up to the square root of num

17.     for i in range(2, int(math.sqrt(num)) + 1):

18.         if num % i == 0:

19.             return False

20.     return True

21.

22.

23. def primeSieve(sieveSize):

24.     # Returns a list of prime numbers calculated using

25.     # the Sieve of Eratosthenes algorithm.

26.

27.     sieve = [True] * sieveSize

28.     sieve[0] = False # zero and one are not prime numbers

29.     sieve[1] = False

30.

31.     # create the sieve

32.     for i in range(2, int(math.sqrt(sieveSize)) + 1):

33.         pointer = i * 2

34.         while pointer < sieveSize:

35.             sieve[pointer] = False

36.             pointer += i

37.

38.     # compile the list of primes

39.     primes = []

40.     for i in range(sieveSize):

41.    if sieve[i] == True:

42.     primes.append(i)

43.

44.     return primes

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote