1: function SUMELEMENT array A 2: if length(A)1: 3: return ?? 4: else: 6: 7: 8:
ID: 3713438 • Letter: 1
Question
1: function SUMELEMENT array A 2: if length(A)1: 3: return ?? 4: else: 6: 7: 8: end function Al ? A10 : length(A)/2] A2Allength(A)/2 length(A)] return SumElement(A1) + 2* SumElement(A2) Assume that items in the first half of array A are copied into array A1 and the items in the second half of array A are copied into array A2 (i.e. these are O(n) operations) 1. Write the running time of this function as a recurrence relation. 2. Using Master Method give the running time complexity of this function in Big O notationExplanation / Answer
if lenght(A)==1
return A[0] ; T(1)
else
A1=A[0:lenght(A)/2]
A1=A[lenght(A)/2 : length(A) ] O(n)
return sumelement(A1)+2*sumelement(A2) T(n/2)+2*T(n/2)
running time this function :
T(n)=T(1)+O(n)+T(n/2)+2*T(n/2)
T(n)=3T(n/2)+O(n)
MASTER THEOREM APPLY FOR TEH RECURRENCE OF THE FOLLWOING FORM
T(n)=aT(n/b)+f(n)
where a>=1 and b>1 are constant and f(n) is asymptotically positive function.
There are following three cases:
1. If f(n) = ?(nc) where c < Logba then T(n) = ?(nLogba)
2. If f(n) = ?(nc) where c = Logba then T(n) = ?(ncLog n)
3.If f(n) = ?(nc) where c > Logba then T(n) = ?(f(n))
here T(n)=3T(n/2)+O(n)
a=3, b=2,c=1
lob23=1.58
c<log23 => 1<1.58
so according to master theorem condition 1
running time complexity of this function T(n)=O(nlog23)
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.