Help with implementing isCompleteTree JAVA. I have to check if the given array i
ID: 3714893 • Letter: H
Question
Help with implementing isCompleteTree JAVA. I have to check if the given array is a complete binary tree.
CODE:
import java.util.List;
import java.util.ArrayList;
public class ArrayHeapChecker {
/*
* This nested class contains a completed implementation of Entry.
*
* You do not need to edit this class.
*/
public static class Entry<K extends Comparable<K>, V> {
private K key;
private V value;
public Entry(K key, V value) {
this.key = key;
this.value = value;
}
public K getKey() {return key;}
public V getValue() {return value;}
public void setKey(K key) {this.key = key;}
public void setValue(V value) {this.value = value;}
}
/**
* Checks if the given array is a complete binary tree.
*
* @param entries
* array of entries to be tested
*
* @return true if the input array encodes a complete binary tree, false otherwise
*/
public static <K extends Comparable<K>, V> boolean isCompleteBinaryTree(List<Entry<K, V>> entries) {
if(!isBinaryTree(entries)) {
return false;
}
// TODO: implement this
return true;
}
Explanation / Answer
Program:
//Java Program to impliment BST
import java.util.Scanner;
// Create class BSTNode
class BSTNode
{
BSTNode left, right;
int data;
//Create Constructor
public BSTNode()
{
left = null; //both nodes are null pointers
right = null;
data = 0;
}
//Create Constructor
public BSTNode(int n)
{
left = null;
right = null;
data = n;
}
//Create Function to set left node
public void setLeft(BSTNode n)
{
left = n;
}
//Create Function to set right node
public void setRight(BSTNode n)
{
right = n;
}
//get left node
public BSTNode getLeft()
{
return left;
}
// Function to get right node
public BSTNode getRight()
{
return right;
}
//get left node
public void setData(int d)
{
data = d;
}
// Function to get data from node
public int getData()
{
return data;
}
}
// Class Binary Search Tree
class BST
{
private BSTNode root;
// Constructor
public BST()
{
root = null;
}
//Function to check if tree is empty
public boolean isEmpty()
{
return root == null;
}
// Functions to insert data
public void insert(int data)
{
root = insert(root, data);
}
// insert data recursively
private BSTNode insert(BSTNode node, int data)
{
if (node == null) //check is it empty or not
node = new BSTNode(data);
else
{
if (data <= node.getData())
node.left = insert(node.left, data);
else
node.right = insert(node.right, data);
}
return node;
}
// Functions to delete data
public void delete(int k)
{
if (isEmpty())
System.out.println("Tree Empty");
else if (search(k) == false)
System.out.println("Sorry "+ k +" is not present");
else
{
root = delete(root, k);
System.out.println(k+ " deleted from the tree");
}
}
private BSTNode delete(BSTNode root, int k) //delete element from BST
{
BSTNode p, p2, n; //p1 and p2 left and right pointers
if (root.getData() == k) //get data from the list
{
BSTNode lt, rt;
lt = root.getLeft();
rt = root.getRight();
if (lt == null && rt == null)
return null;
else if (lt == null)
{
p = rt;
return p;
}
else if (rt == null)
{
p = lt;
return p;
}
else
{//find element is there or not there
p2 = rt;
p = rt;
while (p.getLeft() != null)
p = p.getLeft();
p.setLeft(lt);
return p2;
}
}
if (k < root.getData())
{
n = delete(root.getLeft(), k);
root.setLeft(n);
}
else
{
n = delete(root.getRight(), k);
root.setRight(n);
}
return root;
}
// Functions to count number of nodes
public int countNodes()
{
return countNodes(root);
}
// Function to count number of nodes recursively
private int countNodes(BSTNode r)
{
if (r == null)
return 0;
else
{
int l = 1;
l += countNodes(r.getLeft());
l += countNodes(r.getRight());
return l;
}
}
// Functions to search for an element
public boolean search(int val)
{
return search(root, val);
}
// Function to search for an element recursively
private boolean search(BSTNode r, int val)
{
boolean found = false;
while ((r != null) && !found)
{
int rval = r.getData();
if (val < rval)
r = r.getLeft();
else if (val > rval)
r = r.getRight();
else
{
found = true;
break;
}
found = search(r, val);
}
return found;
}
// Function for inorder traversal
public void inorder()
{
inorder(root);
}
private void inorder(BSTNode r)
{
if (r != null)
{
inorder(r.getLeft());
System.out.print(r.getData() +" ");
inorder(r.getRight());
}
}
// Function for preorder traversal
public void preorder()
{
preorder(root);
}
private void preorder(BSTNode r)
{
if (r != null)
{
System.out.print(r.getData() +" ");
preorder(r.getLeft());
preorder(r.getRight());
}
}
// Function for postorder traversal
public void postorder()
{
postorder(root);
}
private void postorder(BSTNode r)
{
if (r != null)
{
postorder(r.getLeft());
postorder(r.getRight());
System.out.print(r.getData() +" ");
}
}
}
// Class BinarySearchTree
public class BinarySearchTree
{
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
// Creating object of BST
BST bst = new BST();
System.out.println("Binary Search Tree Test ");
char ch;
int choice;
// Perform tree operations
do
{
System.out.println(" Binary Search Tree Operations ");
System.out.println("1. Insert ");
System.out.println("2. Delete");
System.out.println("3. Search");
System.out.println("4. Count nodes");
System.out.println("5. Check empty");
System.out.println("6. Display");
System.out.println("7. Eit");
System.out.println(" Please selec your choice ");
choice = scan.nextInt();
switch (choice)
{
case 1 :
System.out.println("Enter integer element to insert");
bst.insert( scan.nextInt() );
break;
case 2 :
System.out.println("Enter integer element to delete");
bst.delete( scan.nextInt() );
break;
case 3 :
System.out.println("Enter integer element to search");
System.out.println("Search result : "+ bst.search( scan.nextInt() ));
break;
case 4 :
System.out.println("Nodes = "+ bst.countNodes());
break;
case 5 :
System.out.println("Empty status = "+ bst.isEmpty());
break;
case 6:
System.out.print(" Post order : ");
bst.postorder();
System.out.print(" Pre order : ");
bst.preorder();
System.out.print(" In order : ");
bst.inorder();
break;
}
} while (choice!=7);
}
}
Output:
Binary Search Tree Operations
1. Insert
2. Delete
3. Search
4. Count nodes
5. Check empty
6. Display
7. Eit
Please selec your choice
1
Enter integer element to insert
11
Binary Search Tree Operations
1. Insert
2. Delete
3. Search
4. Count nodes
5. Check empty
6. Display
7. Eit
Please selec your choice
1
Enter integer element to insert
12
Binary Search Tree Operations
1. Insert
2. Delete
3. Search
4. Count nodes
5. Check empty
6. Display
7. Eit
Please selec your choice
1
Enter integer element to insert
13
Binary Search Tree Operations
1. Insert
2. Delete
3. Search
4. Count nodes
5. Check empty
6. Display
7. Eit
Please selec your choice
1
Enter integer element to insert
14
Binary Search Tree Operations
1. Insert
2. Delete
3. Search
4. Count nodes
5. Check empty
6. Display
7. Eit
Please selec your choice
6
Post order : 14 13 12 11
Pre order : 11 12 13 14
In order : 11 12 13 14
Binary Search Tree Operations
1. Insert
2. Delete
3. Search
4. Count nodes
5. Check empty
6. Display
7. Eit
Please selec your choice
3
Enter integer element to search
14
Search result : true
Binary Search Tree Operations
1. Insert
2. Delete
3. Search
4. Count nodes
5. Check empty
6. Display
7. Eit
Please selec your choice
5
Empty status = false
Binary Search Tree Operations
1. Insert
2. Delete
3. Search
4. Count nodes
5. Check empty
6. Display
7. Eit
Please selec your choice
6
Post order : 14 13 12 11
Pre order : 11 12 13 14
In order : 11 12 13 14
Binary Search Tree Operations
1. Insert
2. Delete
3. Search
4. Count nodes
5. Check empty
6. Display
7. Eit
Please selec your choice
7
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.