Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Question 1: Perform the following conversions: 231710 to hexadecimal 11100101112

ID: 3745346 • Letter: Q

Question

Question 1: Perform the following conversions:

231710 to hexadecimal
11100101112 to hexadecimal
10110100012 to decimal
59116 to decimal
31610 to binary
DFA016 to binary

Question 2: Show the representation of the following values in 8-bit two's complement notation:

125
-71
56
-26

Question 3: Perform the following additions of 8-bit two's complement numbers:

0001 1011 + 0100 1010
1010 0011 + 0001 0101
1000 0110 + 1001 0111
1101 1100 + 0011 0110

Question 4: Perform the following subtraction of 8-bit two's complement numbers:

0001 1011 - 0100 1010
1010 0011 - 0001 0101
1000 0110 - 1001 0111
1101 1100 - 0011 0110

Question 5: Convert the following decimal numbers to 32-bit IEEE floating point:

173.28125
-43.3125

Question 6: Convert the following 32-bit IEEE floating point numbers to decimal:

0100 0100 1000 1010 0010 0000 0000 0000
1100 0000 0010 1101 0111 0000 1010 0100

Explanation / Answer

Following procedure can be used to convert decimal number to any number (binary, octal and hexadecimal)

Question 1:

If 231710 is binary number, then

Decimal Number         Operation       Quotient          Remainder      Hexadecimal Result

231710                        / 16                  14481              14 = E              E

14481                           / 16                  905                  1                      1E

905                              / 16                   56                    9                      91E

56                                / 16                   3                      8                      891E

3                                 / 16                    0                      3                      3891E

(231710)10 = (3891E)16

If 231710 is octal number, so first convert octal to binary by converting each octal number to its equivalent three digit binary number.

(231710)8 = (010 011 001 111 001 000)2

And then convert binary number to hexadecimal by arranging binary digit into set of four bit.

(010 011 001 111 001 000)2 = (0001 0011 0011 1100 1000)2 = (133C8)16

(231710)8 = (133C8)16

Similarly, solving another problems.

Here, radix is not mentioned in given problems, So I have converted all possible radix to the asked radix.

(11100101112)10 = (2959E19F8)16

(11100101112)8 = (4900824A)16

(11100101112)8 = (1224770122)10

(11100101112)16 = (1172527124754)2

(59116)16 = (364822)2

(31610)10 = (111101101111010)2

(31610)8 = (011 001 110 001 000)2

(31610)16 = (0011 0001 0110 0001 0000)2

(DFA016)16 = (110111111010000000010110)2

Question 2: Converting to 8-Bit 2’s complement.

(125)10 = (01111101)2

Invert all digits: 0         1          1          1          1          1          0          1

                        1         0          0          0          0          0          1          0

Now add 1 to it.

1          0          0          0          0          0          1          0

+                                                                                  1

= 1       0          0          0          0          0          1          1

So, 125 in 2’s Complement is 10000011

Similarly,

-71 in 2’s complement is 10111001

56 in 2’s complement is 00111000

-26 in 2’s complement is 11100110

Question 3: Addition of 8-Bit 2’s complement number

Carry                           1          1                      1         

0          0          0          1          1          0          1          1

+          0         1          0          0          1          0          1          0

=          0          1          1          0          0          1          0          1

So, 0001 1011 + 0100 1010 = 0110 0101

Similarly, solving other problems as

1010 0011 + 0001 0101 = 01011 1000

1000 0110 + 1001 0111 = 010001 1101

1101 1100 + 0011 0110 = 010001 0010

Question 4: Subtraction of 8-Bit 2’s complement number

Borrow             1

0          0          0          1          1          0          1          1

-          0          1          0          0          1          0          1          0

            1          1          0          1          0          0          0          1

            Since, there is no digit to borrow, so the result is in negative number.

Convert it into 2’s complement,

1          1          0          1          0          0          0          1

Inverting digits,

0          0          1          0          1          1          1          0

+                                                                                  1

0          0          1          0          1          1          1          1

So,

0001 1011 - 0100 1010 = -00101111

Similarly solving other problems,

1010 0011 - 0001 0101 = 1000 1110

1000 0110 - 1001 0111 = -0001 0001

1101 1100 - 0011 0110 = 1010 0110

Question 5: Convert decimal to 32-bit IEEE floating point

173.28125

The 32-bit representation consists of three parts.

First bit indicate whether number is positive or negative. 0 for positive and 1 for negative.

Here number is positive, so first digit is 0.

Convert 173.28125 to binary number.

(173.28125)10 = (10101101.01001)2

Now shift decimal to 7 place left so that there is only one non-zero decimal place in number.

            1.010110101001

Now, take the number after decimal place and add Zero’s to make it 23 bit

01011010100100000000000

This 23 bit represents the fraction.

For exponent bit,

We have shifted the decimal to 7 place.

Add 7 to a127 = 134.

Convert 134 into binary.

(134)10 = (10000110)2

So, final 32-bit IEEE floating point for 173.28125 is 0 10000110 01011010100100000000000

Question 6: Convert 32-bit IEEE floating point numbers to decimal

0 10001001 00010100010000000000000

As, first digit is 0, so its positive number.

For exponent,

10001001 = 137

So, number of decimal place to shift right is 137-127 = 10

Now fraction part, shift decimal 10 place right in 00010100010000000000000.

After shifting we get,

10001010001.0000000000000

Now, convert above binary number to decimal number.

(10001010001)2 = (1105)10

So, 0 10001001 00010100010000000000000 in decimal number is +1105.

Similarly, solving another problem;

1100 0000 0010 1101 0111 0000 1010 0100 in decimal is -2.71000003814697265625.

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote