Write a JAVA program called PlaySingleNotes to play a sequence of notes represen
ID: 3747037 • Letter: W
Question
Write a JAVA program called PlaySingleNotes to play a sequence of notes represented by note names in a textfile.
Write the program so that it:
Declares and creates a symbol table using the algs31.BinarySearchST class;
Reads in a file notes_frequencies.txt where each line is a pair of strings separated by whitespace. The first string is the name of a musical note and the second a double value that is its sound frequency as found on a piano. For example, the note A4 is paired with the frequency 440.0 and the note C4 with the frequency 261.626. As each line is read, an entry is made in the symbol table where the note name is the key and the frequency is the value.
Reads in a note file, where each line contains a duration in seconds (floating point) and a note name. The values are separated by whitespace. A sample file is single_notes.txt.
Both the notes and frequencies file and the single notes file should be placed into the Eclipse data directory and, as in the previous program, read in using StdIn and the fromFile method.
To process a text file where each line contains a fixed set of data fields:
Use the method readLine in the StdIn class, which returns a string;
Split the string into an array of strings using the instance method split in the String class;
Convert the numeric strings into numeric values using the method parseDouble in the Double class.
To play each chord, place into your program and call this method:
You will also have to import stdlib.StdAudio.
notes_frequencies.txt:
single_notes.txt
algs31.BinarySearchST class
package algs31;
import stdlib.*;
import algs13.Queue;
/* ***********************************************************************
* Compilation: javac BinarySearchST.java
* Execution: java BinarySearchST
* Dependencies: StdIn.java StdOut.java
* Data files: http://algs4.cs.princeton.edu/31elementary/tinyST.txt
*
* Symbol table implementation with binary search in an ordered array.
*
* % more tinyST.txt
* S E A R C H E X A M P L E
*
* % java BinarySearchST < tinyST.txt
* A 8
* C 4
* E 12
* H 5
* L 11
* M 9
* P 10
* R 3
* S 0
* X 7
*
*************************************************************************/
public class BinarySearchST<K extends Comparable<? super K>, V> {
private static final int INIT_CAPACITY = 2;
private K[] keys;
private V[] vals;
private int N = 0;
// create an empty symbol table with default initial capacity
public BinarySearchST() { this(INIT_CAPACITY); }
// create an empty symbol table with given initial capacity
@SuppressWarnings("unchecked")
public BinarySearchST(int capacity) {
keys = (K[]) new Comparable[capacity];
vals = (V[]) new Object[capacity];
}
// resize the underlying arrays
@SuppressWarnings("unchecked")
private void resize(int capacity) {
if (capacity <= N) throw new IllegalArgumentException ();
K[] tempk = (K[]) new Comparable[capacity];
V[] tempv = (V[]) new Object[capacity];
for (int i = 0; i < N; i++) {
tempk[i] = keys[i];
tempv[i] = vals[i];
}
vals = tempv;
keys = tempk;
}
// is the key in the table?
public boolean contains(K key) { return get(key) != null; }
// number of key-value pairs in the table
public int size() { return N; }
// is the symbol table empty?
public boolean isEmpty() { return size() == 0; }
// return the value associated with the given key, or null if no such key
public V get(K key) {
if (isEmpty()) return null;
int i = rank(key);
if (i < N && keys[i].compareTo(key) == 0) return vals[i];
return null;
}
// return the number of keys in the table that are smaller than given key
public int rank(K key) {
int lo = 0, hi = N-1;
while (lo <= hi) {
int m = lo + (hi - lo) / 2;
int cmp = key.compareTo(keys[m]);
if (cmp < 0) hi = m - 1;
else if (cmp > 0) lo = m + 1;
else return m;
}
return lo;
}
// Search for key. Update value if found; grow table if new.
public void put(K key, V val) {
if (val == null) { delete(key); return; }
int i = rank(key);
// key is already in table
if (i < N && keys[i].compareTo(key) == 0) {
vals[i] = val;
return;
}
// insert new key-value pair
if (N == keys.length) resize(2*keys.length);
for (int j = N; j > i; j--) {
keys[j] = keys[j-1];
vals[j] = vals[j-1];
}
keys[i] = key;
vals[i] = val;
N++;
//assert check();
}
// Remove the key-value pair if present
public void delete(K key) {
if (isEmpty()) return;
// compute rank
int i = rank(key);
// key not in table
if (i == N || keys[i].compareTo(key) != 0) {
return;
}
for (int j = i; j < N-1; j++) {
keys[j] = keys[j+1];
vals[j] = vals[j+1];
}
N--;
keys[N] = null; // to avoid loitering
vals[N] = null;
// resize if 1/4 full
if (N > 0 && N == keys.length/4) resize(keys.length/2);
//assert check();
}
// delete the minimum key and its associated value
public void deleteMin() {
if (isEmpty()) throw new Error("Symbol table underflow error");
delete(min());
}
// delete the maximum key and its associated value
public void deleteMax() {
if (isEmpty()) throw new Error("Symbol table underflow error");
delete(max());
}
/* ***************************************************************************
* Ordered symbol table methods
*****************************************************************************/
public K min() {
if (isEmpty()) return null;
return keys[0];
}
public K max() {
if (isEmpty()) return null;
return keys[N-1];
}
public K select(int k) {
if (k < 0 || k >= N) return null;
return keys[k];
}
public K floor(K key) {
int i = rank(key);
if (i < N && key.compareTo(keys[i]) == 0) return keys[i];
if (i == 0) return null;
else return keys[i-1];
}
public K ceiling(K key) {
int i = rank(key);
if (i == N) return null;
else return keys[i];
}
public int size(K lo, K hi) {
if (lo.compareTo(hi) > 0) return 0;
if (contains(hi)) return rank(hi) - rank(lo) + 1;
else return rank(hi) - rank(lo);
}
public Iterable<K> keys() {
return keys(min(), max());
}
public Iterable<K> keys(K lo, K hi) {
Queue<K> queue = new Queue<>();
if (lo == null && hi == null) return queue;
if (lo == null) throw new Error("lo is null in keys()");
if (hi == null) throw new Error("hi is null in keys()");
if (lo.compareTo(hi) > 0) return queue;
for (int i = rank(lo); i < rank(hi); i++)
queue.enqueue(keys[i]);
if (contains(hi)) queue.enqueue(keys[rank(hi)]);
return queue;
}
/* ***************************************************************************
* Check internal invariants
*****************************************************************************/
private boolean check() {
return isSorted() && rankCheck();
}
// are the items in the array in ascending order?
private boolean isSorted() {
for (int i = 1; i < size(); i++)
if (keys[i].compareTo(keys[i-1]) < 0) return false;
return true;
}
// check that rank(select(i)) = i
private boolean rankCheck() {
for (int i = 0; i < size(); i++)
if (i != rank(select(i))) return false;
for (int i = 0; i < size(); i++)
if (keys[i].compareTo(select(rank(keys[i]))) != 0) return false;
return true;
}
/* ***************************************************************************
* Test client
*****************************************************************************/
public static void main(String[] args) {
StdIn.fromFile("data/tiny.txt");
BinarySearchST<String, Integer> st = new BinarySearchST<>();
for (int i = 0; !StdIn.isEmpty(); i++) {
String key = StdIn.readString();
st.put(key, i);
}
for (String s : st.keys())
StdOut.println(s + " " + st.get(s));
}
}
Explanation / Answer
Hi. please find the answer above.. In case of any doubts, please ask in comments. If the answer helps you, please upvote. I am in great need of upvotes. Thanks!
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.