Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

wite a MATLAS pregram shat imelements the 4wiekser algorithrw e sorta 3-dimensio

ID: 3752517 • Letter: W

Question

wite a MATLAS pregram shat imelements the 4wiekser algorithrw e sorta 3-dimensional matrix of any given. dimensions in & steps tha the plane taith the louwest sum of all elements Is atthe front &the flare with the highest ann of-all d n2sides at tha back.. . the 3x3KQ matrix A, which has a planes as shown l46 13 8 1S Compute the sunn at each plane. The sum of Ac,i,1) 1 12 318 13 i5 to highest. This-would-result in. our modi fedhatrx4, baing outputted as a ne matrix 6 23 4 13 14 5 16 18 ia -the- rmance program you will be asked to seleet a pio t that minimi ses the ahanees of worst-case oCnt) behaviour, which accurs erse sorted arrays. There be implemented to enere Cn-lo?" early-sorted or nearly rex are

Explanation / Answer

function [sorted_A] = my_sort(A)

dim_A = size(A,3);

sum_A = sum(A, [1,2]);

[sum_A, I] = sort(sum_A,3);

temp_A = ones(size(A));

for i = 1:dim_A

temp_A(:,:,i) = A(:,:,I(i));

end

temp_A = reshape(temp_A,[],dim_A);

for i = 1:dim_A

temp_A(:,i) = quick_Sort(temp_A(:,i));

end

sorted_A = reshape(temp_A,size(A));

for i = 1:dim_A

sorted_A(:,:,i) = sorted_A(:,:,i)';

end

end

function sortedArray = quick_Sort(array)

if numel(array) <= 1

sortedArray = array;

return

end

idx=randperm(length(array),1);

temp = array(idx);

array(idx) = array(end);

array(end) = temp;

pivot = array(end);

array(end) = [];

sortedArray = [quick_Sort( array(array <= pivot) ) pivot quick_Sort( array(array > pivot) )];

end